AGENCE NATIONALE DE LA RECHERCHE
Al4CODE
Al-aided FEC code design & decoding

ANR, Appel a Projets Générique (AAPG 2021)
Al4CODE Project (ANR-21-CE25-0006)

Deliverable D2.1
Specification of the code design problems

Editor: Charly Poulliat (Toulouse INP)
Deliverable nature: Public
Due date: January 31, 2023
Delivery date: April 14, 2023
Version: 1.0
Total number of pages: 22 pages
Keywords:
Abstract

This deliverable reports on the activities carried out within the Task 2.1 of Work Package 2 (WP2).
WP2 aims at investigating how learning techniques can help come up with new code design paradigms
or discover new code constructions, with application to selected communication scenarios that impose
challenges on FEC code design that are not fully met with existing methods. Accordingly, the deliv-
erable first discusses the opportunities and challenges for a learning-based approach to channel code
design. A review of the current state-of-the-art then follows. Areas for potential improvements are
identified for each of the major code families in use in current standards, and will serve as a starting
point for the forthcoming studies.

D2.1: Design Space Exploration for ML-Augmented Decoding

List of Authors

Partner Author

LAB-STICC/IMTA Raphaél Le Bidan (raphael.lebidan@imt-atlantique.fr)
Charbel Abdel Nour (charbel.abdelnour@imt-atlantique.fr)
Elsa Dupraz (elsa.dupraz@imt-atlantique.fr)
Mathieu Leonardon (mathieu.leonardon@imt-atlantique.fr)
Catherine Douillard (catherine.douillard@imt-atlantique.fr)

Ahmad Ismail (ahmad.ismail@imt-atlantique.fr)

CEA-LETI Valentin Savin (valetin.savinQcea.fr)
Valérien Mannoni (valerien.mannoni@cea.fr)

Joachim Rosseel (joachim.rosseel@cea.fr)

IMS/INPB Christophe Jégo (christophe.jego@ims-bordeaux.fr)
Camille Leroux (camille.leroux@ims-bordeaux.fr)
Romain Tajan (romain.tajan@ims-bordeaux.fr)

Afaf Alaoui (afaf.alaoui@ims-bordeaux.fr)

IRIT/INP-ENSEEIHT Charly Poulliat (charly.poulliat@enseeiht.fr)

ETIS/CYU Iryna Andriyanova (iryna.andriyanova@ensea.fr)
Inbar Fijalkow (inbar.fijalkow@ensea.fr)

Lab-STICC/UBS Emmanuel Boutillon (emmanuel.boutillon@univ-ubs.fr)

Page 2 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

Contents

Introduction

1 Opportunities and challenges for ML-based code design
1.1 Why learning to code ? The many opportunities raised by AI
1.1.1 Incentives and obstacles for trainable communications
1.1.2 Better matching with the channel
1.1.3 Better matching with the decoder,
1.1.4 Being more efficient at constructing capacity-approaching codes
1.1.5 Finding new codes L
1.1.6 Or improving upon existing ones
1.2 Challenges ahead
1.3 Scope of the AI4CODE project e

2 Review of State-of-the-Art ML-assisted Code Design
2.1 LDPC Codes e e
2.2 Turbo Codes e e e e e
2.2.1 The turbo autoencoder (TurboAE) baseline
2.2.2 Further improvements to the TurboAE approach
2.2.3 Extension of the TurboAE approach
2.3 Polar Codes e e e e e e e
2.4 Coded Modulation e

3 Summary of the Planned Contributions
3.1 Decoder-aware short LDPC code design
3.2 Design of Polar codes optimized for both decoding and implementation performance .
3.3 Joint interleaving and puncturing learningo
3.4 Joint design of code and modulation o oL
3.5 Design of LDPC codes for deep unfolded non linear coded modulation

4 General Conclusion

Bibliography

N

0 33O O ot ot ot G

13
14

15
15
15
16
16
17

18

19

©AI4CODE, October 2022 Page 3 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

Introduction

The aim of the AI4CODE project is to explore and assess how machine learning (ML) techniques
can contribute to improvements in coding theory, techniques, and practice. The focus is placed
on forward error correction (FEC), and the project is built around the following four inter-related
objectives, identified and detailed in the scientific document of the project:

Objective #1: Explore how ML can contribute to improving the state of the art in FEC decoding.
Objective #2: Investigate how ML can improve current knowledge and practice in FEC code design.
Objective #3: Learn from the machine.

Objective #4: Develop a general expertise and critical thinking on ML algorithms and their appli-
cations to coding theory and practice.

Work Package 2 (WP2) of the AI4CODE project investigates how learning techniques can
help come up with new code design paradigms or discover new code constructions with application
to selected communication scenarios that place challenges on FEC code design that existing methods
can address only partially at best.

The Gantt chart of WP2 is represented in Fig. 1. This deliverable reports on the activities carried
out within the Task 2.1, aimed at specifying code design problems for which ML can be a game
changer. The main objectives are as follows:

e I[dentify communication problems and opportunities for a learning-based code design approach,
e Review the state-of-the-art (SoA) for learning-based code design methods,

e Identify limitations and weaknesses, and highlight areas of potential improvements

Accordingly, the deliverable is organized as follows.

Section 1 formalizes the communication scenarios where the performance or decoding complexity
of existing FEC codes do not meet the expected requirements and could be improved by ML-assisted
design, and specifies the targeted improvements/

Section 2 provides a broad state-of-the-art review of ML-assisted FEC design, with an emphasis
on recent advances in ML-based design of Low-Density Parity-Check (LDPC), Turbo, Polar, dense
(e.g., algebraic) codes and coded modulations (CM).

Section 3 lists the areas for potential improvements have been identified for each code family, and
that will be explored in the forthcoming studies related to this WP.

0 6 12 18 24 30 36 42 48

Task 2.1: Specify code design problems —>
Task 2.3: Evaluate designs & analyze learning outputs

Figure 1: Gantt diagram of WP2

WP2

Page 4 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

1 Opportunities and challenges for ML-based code design

1.1 Why learning to code ? The many opportunities raised by Al

Recent years have seen a flurry of interest in the field of communications to investigate deep learn-
ing methods for physical layer design and resource allocation in communication networks [1,2|. In
particular, learning techniques are expected to be one of the key enablers to accommodate the many
envisioned use cases and related requirements of future beyond 5G (B5G) and 6G systems [3].

1.1.1 Incentives and obstacles for trainable communications

At the heart of many of these approaches is the concept of trainable communication systems, which
rethink communications system design as a transmitter-receiver joint optimization problem for which
a global solution can be learned, rather than as a succession of separate processing block where each
block is designed and optimized more or less independently of the others [1,4]. The trainable ap-
proach to communication system design is facilitated by the existence of off-the-shelf, comprehensive
dedicated learning libraries, such as the recent Sionna open-source library for rapid prototyping and
testing of complex communication system architectures that incorporate neural networks [5]. The fun-
damental learning architecture at the core of many of these learned communication signals approaches
is the auto-encoder (AE) architecture, whose application to this context was first championed by [1].
The holistic trainable approach may not necessarily result in performance improvement over the tra-
ditional communication engineering paradigm, as long as the models used to design the individual
processing blocks in the separate approach accurately reflect real-world operation conditions. Very of-
ten, however, reality happens to deviate substantially from the assumed models, especially in wireless
transmissions, resulting in sub-optimal communication systems. Even if a good model is known, the
fundamental limits on achievable performance and the coding and signaling techniques to achieve them
may not. In that case trainable communication systems are in their rightful place. Also, trainable
communication systems may result in integrated transceivers of lower overall complexity, and that can
be easily adapted in a data-driven manner. But for as promising as they may look, those potential
benefits should not obliterate the respective advantages of the classical, divide-and-conquer engineer-
ing approach, which has long proved its worth over the past 70 years. Let us mention only one, but
of utmost importance: interpretability in case of misoperation, with the possibility to trace back the
origin of the problem down to the faulty signal processing block, and to fix it without compromising
inevitably the whole design.

1.1.2 Better matching with the channel

In the context of channel coding, the bulk of the work on ML has focused on using neural decoders
to improve the decoding of existing linear codes. This line of research is the main topic of WP3 and
an overview of the corresponding state-of-the-art is provided in AI4CODE Deliverable D3.1 [6]. But
recent years have also witnessed a rapidly growing interest in the application of learning techniques
to the search for new channel codes, see e.g. the overview in [7]. What good can ML be for channel
code design, given that modern FEC codes such as turbo codes, LDPC or polar codes can already
approach capacity within a tenth of decibels and with workable decoders ?

First, the latter only holds true for certain abstract memoryless channel models, that are idealized
version of real operating conditions. Modern wireless systems compensate partly for the unavoidable
mismatch between the model assumed for code design and the real channel, by modulation and code
rate adaptation at the transmitter, and by channel-state information estimation and metric adapta-
tion at the decoder. But this assumes a feedback link and low-latency communications. Similarly,
interleaving is used to turn channels with memory into approximate memoryless channels at the code-

©AI4CODE, October 2022 Page 5 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

word level, but at the cost of latency and memory. Consequently there is a real incentive and stake
at developing channel codes that can adapt automatically to unknown noise and fading conditions.

As regard to the latter point, the design of feedback codes is one of the few areas in channel
coding where there is much room left for improvement on closing the gap between theory and prac-
tice. Capacity-achieving feedback coding strategies with optimal decay of error-probability with block
length have long been known for the archetypal channels of coding theory, such as the binary sym-
metric channel (BSC) or the additive white gaussian noise (AWGN) channels. However they often
rely on unrealistic or impractical assumptions, such as noiseless or unit-time delayed feedback. The
assumption of noiseless feedback, in particular, has long been recognized as the Achilles’ heel of the
information-theoretic study of feedback. As of today, the optimal coding scheme for communicat-
ing over an AWGN channel with AWGN noisy feedback is still unknown. On the other hand, it is
known that linear feedback codes are not sufficient for that purpose [8], calling for more elaborate
non-linear coding schemes and sequential retransmission protocols that make an ideal playground for
deep learning and reinforcement learning approaches.

1.1.3 Better matching with the decoder

Going back to the classical, feedforward point-to-point communication scenario, another mismatch
arises at medium-to-short block length with modern FEC codes such as Turbo, LDPC or Polar codes,
namely a (code, decoder)-pair mismatch. It has been recognized and demonstrated multiple times
that the performance of such codes under classical message-passing decoding degrades significantly
as the block length decreases, see e.g. the code benchmarks in [9]. This is not so much the result
of weaknesses inherent to the code itself than the symptom of a mismatch between the code design
and the message-passing decoder. Part of this mismatch comes from the heuristics and metrics used
by most LDPC or Turbo code design methods, which fail to appropriately capture the error-rate
performance of iterative decoding at short block length. The convergence of iterative decoding is hard
to analyze in this regime, as simplifying assumptions relying on statistical averaging and independence
arguments no longer hold for very short codewords. In addition, focusing on the parameters of the
code (e.g. minimum distance) or of the bipartite graph (e.g. trapping sets) that govern iterative
decoding performance at high signal-to-noise ratio (SNR) is no longer sufficient. Instead, one has to
identify and fix the most critical code or graph weaknesses that hinder performance at low SNR as
well, which is much more challenging. The same problem arises with finite-length Polar code. Polar
code design most often assumes infinite-length codes under SC decoding. In practice, however, systems
such as 5G New Radio use Polar codes of short to moderate block length, supplemented with an outer
cyclic-redundancy check (CRC) code, and decoded by means of a successive-cancellation list (SCL)
decoder. In this context, ML may prove useful in learning codes that are better matched to (= that
perform well when decoded by) a selected target decoder. Learning better (code, decoder)-pairs is a
fundamental stake in coding theory, that extends beyond the sole realm of iteratively-decodable FEC
codes in the short-block-length regime.

1.1.4 Being more efficient at constructing capacity-approaching codes

Even today, more than 20 years after their discovery, the design of rate- and length-flexible capacity-
approaching schemes such as the 4G turbo codes or the 5G LDPC and polar codes remains a blend
of art and science that still relies, to a large extent, on intensive computer search driven by expert
knowledge. Most design procedures for capacity-approaching codes follow a two-step approach: 1)
find an ensemble of codes that is good for the target channel model and decoder, 2) pick up a good
finite-length code within this ensemble. While good, computationally-efficient procedures are known
for step 1), at least for large code length, step 2) usually requires searching over very large dimensional
spaces, precluding systematic exploration. Some form of heuristic optimization or partial search is
used instead. In addition, most often, there is no direct relation between the code- or graph-related
parameters that are used to guide the search at steps 1 and 2, and the finite-length performance
metrics of interest, e.g. BER or FER, calling for time-intensive monte-carlo simulation to discriminate

Page 6 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

between the list of candidate codes returned by the search. ML may contribute in making existing
design methods more efficient by smarter, faster exploration of the space of candidate codes.

1.1.5 Finding new codes

But perhaps the highest demands and expectations concern first and foremost all those coding prob-
lems for which optimal coding strategies are still to be found, especially those for which some form
of non-linear coding is required. The example was given of the design of noisy feedback codes, but
there are a few other communication scenarii for which linear codes cannot provably achieve the best
achievable rates, at least by a direct approach. The non-input-symmetric discrete memoryless channel
is a single-user example of such scenario 10|, whereas the binary adder channel is another example
but in the context of multi-user communications [11].

Nowadays, the need for coding extends far beyond its traditional role and place at the physical
layer. The rise of network communication paired with the advent of new applications such as cloud
storage, distributed learning, caching, or fog computing, prompt the need for novel coding paradigms,
for example to recover from nodes failures in distributed storage and computing. Here, usual code
parameters such as rate or minimum distance step aside in favour of more relevant application-oriented
metrics such as locality, availability, and update efficiency. Beyond ensuring reliable communication
or computing, code design has now to address new goals such as maximizing the number of users
that can be simultaneously served by the system, or minimizing the expected service time [12]. Little
is known, to date, about the optimal achievable trade-off in many such scenarios, and the design of
efficient and practical codes for implementation in real systems is a challenging problem and an active
area of on-going research in which machine learning may also have an important role to play.

1.1.6 Or improving upon existing ones

It is not because linear codes are sufficient to achieve capacity, for example on discrete memoryless
channels, that this forbids the possibility to improve upon them with non-linear codes, in terms of
reliability-length trade-off for instance [13,14]. A major open question is thus whether ML can find
better alternatives to the classical algebraic [15| , convolutional [16], and graph-based codes [14] in
use in all digital communication and storage systems to date.

Also, there are coding theory areas for which optimal solutions are known but sub-optimal ap-
proaches are preferred in practice, since the latter may provide additional benefits that outweigh the
loss. The design of signal-space codes by the combination of coding and modulation is a typical ex-
ample. Albeit not capacity-achieving, the bit-interleaved coded modulation (BICM) paradigm that
decouples binary coding and symbol mapping through interleaving has become ubiquitous in wireless
systems. To a large extent, this is due to the remarkable simplicity with which one can adapt the
code rate by simple adaptation of constellation size and puncturing of code bits. In principle, coded
modulation where coding and symbol mapping are jointly optimized can result in better codes, but
usually not as flexible as the former. Also, symbol mapping is a non-linear operation that compli-
cates the analysis and design of coded modulation. Consequently, not only can deep learning help
improve BICM [4], but it may also facilitate the design of better signal-space codes and related de-
coders, capable of achieving coding, shaping, and possibly also diversity gains with a generic, unified
coding architecture, without sacrificing rate-flexibility. The so-called KO codes recently introduced in
|14] and constructed in a recursive manner, reminiscent from the Plotkin construction of Reed-Muller
codes, may be a first step in that direction.

1.2 Challenges ahead

We have seen that Al may benefit to coding theory in a variety of ways. However this also comes with
its own daunting challenges. We’ll highlight three of them.

The first one is the curse of code dimension. Direct learning of an (n, k) generic, unstructured block
code requires learning 2F codewords embedded into an n-dimensional space. As the code dimension

©AI4CODE, October 2022 Page 7 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

k grows, the amount of data needed for accurate training grows also, but exponentially. Being able
to scale-up the learning to code parameters relevant for practical applications makes it mandatory to
introduce proper structure in the code design, and to leverage upon that structure for the training.
For example, focusing on linear codes and learning a generator or parity-check matrix instead of the
whole code does help to an extent, but is by no means not sufficient. All learned generic linear codes
that we are aware of have dimension k£ < 100 bits. The fact that, even with linear codes, the search
space remain formidable, is part of the reason. But the crux of the problem might lie elsewhere:
perhaps the learning architecture itself is at stake. Channel codes, especially linear codes, have a
high degree of mathematical and topological structure. We would expect to find those structural and
symmetry properties reflected somehow in the learning architecture. Yet most work so far have mainly
considered off-the-shelf learning models. Maybe the most fundamental problem is to find the right
architecture to learn codes.

There is another peculiar feature that differentiate the learning of channel codes from more tradi-
tional machine-learning applications. For most code design problems, training data, for example code
samples, can be easily generated. Thus constructing a dataset is not an issue. On the other hand,
evaluating a sample in the dataset for the training can be. If the code rate and length are fixed, as
happens frequently, then the bit or frame error rate after decoding is usually the relevant figure of
merit for code design. The problem is that evaluating such metrics may requires minutes, hours, or
even days, depending on the operating SNR. It follows that the choice of the right loss function to
make the training practical and relevant at the same time is a non-trivial problem [17,18].

On a very practical level, learning channel codes also raises a number of technical issues, among
which differentiability of the models stands out. Standard deep learning software libraries were not
designed for binary signals and finite field operations. One may enforce binary weights and signals by
some binarization operation, e.g. taking the sign. The problem is that most binarization operators
are highly discontinuous functions, not differentiable or with a zero derivative almost everywhere but
in a few points. Therefore, the usual gradient-descent-based back-propagation techniques cannot be
applied as is to update the binary weights. There are known workarounds to this problem, starting
from the straight-through estimator [19], but no well-established universal solution so far.

1.3 Scope of the AI4CODE project

The AI4CODE project does not intend to attack head-on all the open questions and challenges raised
above. Instead, based on the experience of the project members, the choice has been made to focus,
primarily but not exclusively, on the following selected code design problems:

e Improving the match between the modern FEC codes and their companion message-passing
decoders at short to medium block length ;

o Finding better heuristics and smarter search procedures to be used in the design of turbo (selec-
tion of interleaver and puncturing mask), LDPC (calculation of degree distributions, construction
of the graph), and polar codes (selection of the frozen set) ;

¢ Designing better coded modulation schemes through a joint optimization of the code and mod-
ulation ;

All are regarded as ideal playgrounds for experimenting with ML. Most of them are difficult in the
sense that we lack a clear theoretical understanding so far. Thus any progress on either of these
problems is expected to generate advances that could impact, in turn, the design of communication
systems in the short term, by building intelligently on top of existing knowledge and practice.

The central goal of the AI4CODE project is not to replace expert knowledge by black-box algo-
rithms, but ultimately to learn from the machine. All project members have recognized expertise in
the design and decoding of error-correcting codes. Thus the driving methodology will be to capitalize
upon this expertise and to favour a model-based approach by augmenting our legacy code design
methods with learning algorithms wherever relevant. If the machine comes up with new code designs

Page 8 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

that outperform the state-of-the-art, then we will inspect and try to interpret the trained solutions in
order to infer why they work better, with the intent of obtaining new theoretical hindsight that could
ultimately translate into improved design tools. Being able to generate a good code is not sufficient.
Practical transmission systems need also some performance guarantees, that can be obtained only by
analytical or semi-analytical prediction of error-correction performance. This reinforces the need for
introducing structure in ML-based code design, not only to facilitate and scale the learning, but also
to obtain more easily interpretable solutions.

©AI4CODE, October 2022 Page 9 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

2 Review of State-of-the-Art ML-assisted Code Design

The following is a review of the major learning approaches proposed to design better FEC codes.
In keeping with the objectives set for the AI4CODE project, particular emphasis will be placed on the
FEC code families currently in use in most communication and storage systems, e.g. turbo, LDPC,
and polar codes. We note that ML has lead also to remarkable recent breakthroughs in the design of
feedback codes, first with the Deepcode architecture [20], and more recently with the AttentionCode
scheme [21]. But for as interesting and promising as they are, those schemes fall outside the scope of
the AI4CODE project, which solely focuses on forward-error correction. Accordingly, learned feedback
codes won’t receive further attention and discussion here.

2.1 LDPC Codes

The design of short binary LDPC codes proves to be a real challenge in that the usual methods and
code- or graph-related metrics used to construct capacity-approaching LDPC codes fail to accurately
capture the error-rate performance of iterative decoding at short block length. The problem is that
the convergence of iterative decoding is hard to analyze in this regime. This results in codes with
performance that degrades with the code length. Surprisingly, Al-aided LDPC code design has received
very little attention to date. The bulk of the work has focused on improving the decoding of existing
LDPC codes, notably the 5G New Radio LDPC codes (see the state-of-the-art review in Deliverable
D3.1 [6]). But it is likely that code design needs to be revisited for that purpose also. To the best of
our knowledge, the most relevant and sole contribution to decoder-aware learned LDPC codes is [22]
which uses genetic algorithms to design the full, sparse parity-check matrix at once so as to minimize
the BLER under a prescribed decoding algorithm and number of iterations. The constructed LDPC
code exhibit 0.3 to 0.8 dB additional coding gains over 5G LDPC codes over various channels. More
importantly, the outcomes are analyzed to obtain design hints relevant to this regime. But genetic
algorithms have more to do with standard optimization than with a real learning approach. The
closest related contribution in the literature is [23], which provides an original, comprehensive joint
code-decoder design framework to construct linear block codes, not necessarily sparse, having good
performance under a specific form of neural belief propagation decoder.

A totally different approach is investigated in [24]|. Here, a deep reinforcement learning algorithm
is proposed for LDPC code construction, which attempts to transpose the learning techniques used
in AlphaGo Zero. The design does not necessarily target short codes, and mainly aims at providing
an informed substitute to the classical progressive edge growth (PEG) method. The DNN is trained
by the reinforcement learning algorithm, and then used to generate the training data by repeated
construction of codes through Monte-Carlo tree search (MCTS) techniques. The learned codes have
performance similar to PEG codes, no better, and are obtained at a much more formidable cost in
time and memory. Reinforcement learning techniques were also applied to decoder-aware code design
in [15], and in a smarter way. However the focus was placed on constructing generic linear block codes
with good performance under optimum maximum-likelihood decoding.

The use of learning techniques to optimize LDPC degree distributions was considered in [25]. The
LDPC code design problem is cast as a supervised learning problem by mapping the recursive update
equations of density evolution to a recurrent neural network (RNN) architecture, whose trained weights
are interpreted as the coefficients of the desired degree distributions. The advantage of this approach
over the usual differential evolution method is unclear.

Page 10 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

f160) [—{ h() |—x,

b,
u > fz,e(-) — h(.) |—™X
b,
— T f3’9(.) » h() —X;
(a)
First iteration Last iteration
|
y, — mly;) =+ .
: :ilterate ;@ :
Y= Yo Ys 1 O, imultiple | :
: 11 1,2 H HE

Figure 2.1: : (a) Rate-1/3 TurboAE encoder, (b) Corresponding TurboAE iterative decoder. Both
figures are taken from [26] .

2.2 Turbo Codes

Among the papers published in recent years in the field of AI for channel coding, a particular topic
emerges: the autoencoder approach [1]. The end-to-end learning concept of the AE approach aims at
jointly learning the complete data-link between transmitter and receiver including all required signal
processing.

2.2.1 The turbo autoencoder (TurboAE) baseline

The channel encoder and the decoder together can be viewed as an over-complete AE, where the
noisy channel in the middle corrupts the hidden representation. However, it was observed that neither
convolutional neural networks (CNN) nor recurrent neural networks based AEs can directly approach
state-of-the-art performance. Furthermore, they do not scale well and are typically limited by an
exponential training complexity.

To overcome these issues, the authors in [26] have been inspired by a successful conventional code
construction technique, the turbo coding structure. They have proposed a turbo code inspired neural
network structure called TurboAE [26], which is also described in [27]. As described in Fig. 2.1(a),
TurboAE is a neural network-based over-complete autoencoder parameterized as CNNs along with
pseudo-random interleavers (permutation) and deinterleavers (inverse permutation) inspired by turbo
codes.

The training phase is crucial and has the following specificities:

o Very large batch size (>500) to average the channel noise effect,
e The encoder and decoder are trained separately to avoid getting stuck in local optimum,
e The encoder and decoder are trained with several noise levels.

TurboAE is able to outperform classical algorithms in some scenarios (fading channels) in a wide
signal-to-Noise Ratio region for short message lengths (up to a few hundred bits) but its coding gain
for long block length is smaller than turbo code due to trainability and computation issues.

©AI4CODE, October 2022 Page 11 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

The inference complexities of TurboAE encoder and decoder were compared with the compu-
tational complexities of the canonical Turbo encoder and decoder: a ratio of 17 in favour of the
conventional implementation is observed for the encoder and more than 700 for the decoder.

2.2.2 Further improvements to the TurboAE approach

Improvements were later added to this first version of TurboAE. In [28], a novel interleaver was pro-
posed for the TurboAE to address an issue with non-uniformity of BER across decoded bit positions.
This paper also proposes enhancements to the training of TurboAE via a novel addition to the loss
function. Due to these enhancements, the end-to-end performance of the TurboAE structure is im-
proved with coding gains of several tenths of a dB for the transmission of 100-bit messages. In [29], a
penalty function is introduced to make the interleaver trainable and provide an optimization method-
ology to learn the interleaver together with the rest of TurboAE. The introduction of the trainable
interleaver leads to improved reliability on various channels, such as fading channels and bursty noise
channels. With a personalized training, the improved TurboAE shows a better performance when
compared to the LTE turbo code, but only in the low-to-moderate Ej,/Ny regime. The observed gain
varies from channel to channel and can reach up to 1dB at bit error rate values in the range of 107!
to 1072,

2.2.3 Extension of the TurboAE approach

The authors of [30] have extended the TurboAE concept of [26] to propose a new serially concatenated
TurboAE neural network structure, as shown in Fig. 2.2. They also propose a pre-training technique
that effectively lowers the training time by almost a magnitude. This serial structure shows significant
gains compared to the parallel one, but still shows a gap towards the LTE Turbo code. More recently,
the same authors have shown that classic trellis decoders such as the BCJR algorithm can be used
to decode and also optimize or even learn from scratch CNN-based encoders [31], thereby providing
further insight into this type of neural codes.

Encoder
Cr Bina-| €
e Fk CNN |g RkxFe| rizer

Figure 2.2: : Serial concatenated encoder structure with binarization, taken from [30].

CNN [R rizer | € {1, 1}

-~ ———

In [32], the TurboAE approach is combined with the DeepCode approach of [20], dedicated to
feedback channels. They combine best of both sides by introducing feedback turbo auto-encoder
(FTAE), which has block length gain with feedback on block-delayed feedback channel. FTAE shows
better performance than conventional turbo codes for bock length up to a few hundred bits. Longer
block length performance has still to be improved.

At the same time, the TurboAE concept was combined with feed-forward neural networks for
modulation, hence proposing a neural network based coded modulation called TurboAE-MOD [33].
Training is performed in two phases. In the first phase, the encoder and decoder are fixed and only
the modulator and the demodulator are trained, via AE training. In the second phase, all four blocks,
encoder, modulator, demodulator and decoder, are trained jointly using AE training. The correction
performance of TurboAE-MOD is comparable to turbo codes with standard modulations, such as
PSK and QAM, on AWGN channel for various spectral efficiencies on moderate block lengths, and it
outperforms turbo coded modulations on non-AWGN channels.

Page 12 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

2.3 Polar Codes

The polar coding process splits the input vector into two sets, the information set and the frozen set
that carries known values, usually defined as zero. Given the encoding rate and the code length, the
polar code construction problem aims to decide whether a position in the source vector is a frozen bit or
an information bit, in order to provide the best error-correction performance, for a transmission channel
and a decoding algorithm in particular. The first polar code construction techniques take advantage
of subchannel polarization phenomenon to sort bit channels by reliability and then select the most
reliable ones to send information through [34]. However, reliability-based polar code construction does
not necessarily provide the best error-correction performance under decoding algorithms other than
successive-cancellation (SC) decoding.

Deep learning methods have been recently used as tools to construct polar codes given the nature of
the decoder. In [35] a sequential method of constructing polar codes for SCL decoding was introduced.
The proposed method is formalized as a maze-game and is solved using reinforcement learning. The
game-based polar code constructions were able to outperform the SC standard constructions of [36],
for long codes, under both SC and SCL decoding. Other works propose genetic-algorithm-based polar-
code constructions. In [15] a focus was made on the SC-based decoders, namely SCL, while [37] and
its extension [38] evaluate the BP decoding as well. Apart from decoder types, the major difference
between both works lies in inputs to each step of the genetic algorithm. The genetic population in
[15] was randomly initialized whereas [37] adopts prior constructions based on the Bhattacharyya
parameter introduced in [34] and RM-polar codes [39]. The error-performance results in [15] and [37]
were compared to previous works. It turns out that the genetic constructions perform better than
those generated in [40], [39] and [41] under SCL decoding. The genetic BP-tailored polar code in [37]
shows an error-performance slightly close to the one constructed using the method in [36] under SCL
decoding. A graph-based polar code construction method for BP decoding was introduced [42]. The
method deduces its trainable neural network from the unrolled BP-decoding graph along iterations and
takes into account the channel model. The network was trained over both AWGN and Rayleigh fading
channels. The resulting code constructions were compared to 5G polar codes under BP decoding and
were proven more effective in terms of error-performance over both channels. Authors in [43] proposed
a different graph-based method tailored for the CA-SCL decoding using a bipartite Tanner-like graph.
The neural network graph turns out to be generalized to design codes with characteristics other than
those seen during training, such as different code lengths, code rates, and channel conditions. The
constructions generated can either achieve better or similar error-performance with remarkably lower
training complexity in comparison with polar codes in [39], [36], [38] and [35].

In [44], a neural network architecture was built in order to predict the error performance of polar
codes under SCL decoding, according to their frozen bit positions. The trained network was further
used to generate more frozen bit sequences using Projected Gradient Descent methodology. As a
result, the newfound sequences, for long codes, outperform the training data in terms of frame-error-
rate. In [45], [46] and [15], attention was placed on nested polar codes which meet communication
system requirements regarding memory storage. The construction problem has been modeled as a
Markov decision process in [45] and [15]. The reliability sequence was sequentially constructed using
a neural network optimized A2C (Advantage Actor Critic) algorithm to maximize the performances
overall the nested codes [15]. PPO (proximal policy optimization) algorithm was used in [45], given
prior knowledge on optimal polar code constructions generated by the genetic algorithm of [15] for
faster convergence. The obtained codes can achieve a comparable, even better, performance compared
to the ones of [36] and [40]. In [46], an attention-mechanism-based neural network architecture was
adopted. The proposed code constructions outperform 5G nested polar codes as well as the construc-
tions resulted from paper [15] in terms of both error-performance and construction time complexity.

©AI4CODE, October 2022 Page 13 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

2.4 Coded Modulation

The literature on the topic of Al techniques for the design of coded modulations is far from abundance.
Among recent papers, we can mention [47], where a reinforcement learning technique was used to design
non-uniform constellations dedicated for non-binary (NB) codes. More specifically, a multi-agent deep
Q-learning (DQN) algorithm was used to design a non-uniform 64-QAM constellation to be matched
with a NB turbo code (NB-TC) based on one-memory NB convolutional component codes (NB-CC)
defined over GF(64).

The application of a non-uniform distribution of the FKuclidean distances between constellation
symbols can bring its share of improvements for a given NB-CC defined over GF(q) when adapted to
the distance spectrum of the code. However, a considerable number of possible constellation shapes
should be enumerated in order to find the best non-uniform constellation for a given NB-CC. For large
values of ¢ and constellation sizes, this enumeration becomes computationally intractable.

The multiagent DQN algorithm proposed in [48] was used to jointly optimize the positions of all
constellation symbols. It involves training multiple DQN agents in parallel in order to jointly optimize
a single total reward called the team reward. In the study case involving codes over GF(64) and a
64-QAM constellation, 64 DQN learning agents were applied in parallel to maximize the minimum
Euclidean distance of the NB-CC.

Monte Carlo simulations carried out in Gaussian channel showed that the DQN-assisted design
of the 64-QAM constellation improves the floor of the corresponding turbo coded modulation by one
decade without significantly penalizing its convergence threshold.

Page 14 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

3 Summary of the Planned Contributions

3.1 Decoder-aware short LDPC code design

The heuristics used by most practical LDPC code design methods aim at optimizing code or bipartite
graph parameters that only partially reflect the performance of iterative decoding at short length.
AT4CODE intends to push one step further the decoder-aware design approach of [37] by investigating
at a broader level how ML can help come up with short, structured LDPC codes that are better suited
to iterative decoding at short to very-short block length. A first step could be to start from an initial
bipartite graph either constructed at random or produced by one of the usual LDPC code design
method, and use learning techniques, for example reinforcement learning, to progressively transform
this initial graph into a new graph having better performance under a prescribed iterative decoding
algorithm. Our primary goal is to learn how to design short LDPC codes which are good for BP
decoding or for any of its improvement to be developed within the project. The best bipartite graphs
produced by learning will be compared to the graphs obtained by conventional designs, with the aim
of gaining theoretical hindsight about LDPC code design at short length. The underlying motivation
is to characterize LDPC code ensembles, e.g. identify special code structures or degree distributions,
that are good for iterative decoding in this regime. Learned joint optimization of the code design and
neural BP decoder will also be investigated in a second step.

3.2 Design of Polar codes optimized for both decoding and imple-
mentation performance

The construction of polar codes consists in selecting the location of frozen bits. The original polar
codes were devised assuming an SC decoder with an infinite code length N. However, the polarization
phenomenon grows slowly with N, and the SC decoder, despite its low complexity, does not seem to
be a practical solution, especially if N has to be very large (N > 219).

The alternative SCL decoder brings some performance improvements at some complexity cost.
This algorithm can be seen as an approximate Maximum-Likelihood Decoder (MLD) in the sense
that if the list size L = 2K, all the possible codewords would be evaluated in terms of distance to
the received vector. Unlike the SC decoder, the SCL decoder benefits from codes with good distance
properties. Some minimum distance optimizations were proposed in order to improve the decoding
performance. The PAC codes, and the dynamic frozen bits polar codes are two instances of these
improved constructions. However, unlike SC decoding, even if these codes are optimized for distance,
the construction methods do not actually include the decoder model in the optimization process. The
challenge here is to find construction methods that would include the decoder model but also some
implementation parameters in such a way that the polar code is optimized for both the decoding
performance and the implementation efficiency. To reach this goal, we propose to start from the work
in [44]. The proposed method is based on the prediction of the FER performance of a polar code
assuming a given decoder configuration(SCL with L = 8). It is shown that a well defined neural
network can predict the performance of a frozen bit set under SCL. The neural network can also
provide a frozen bit set given a target FER. The generated codes actually reach better decoding
performance than the learnt codes. The learning process is agnostic with the type of decoder or the
list size. The NN can be used to predict the performance of any polar decoder as long as it is used to
generate the learning data set.

As a first step, we want to change the learning set to a better one. Actually, in [44], the polar codes
data set is built from density evolution methods. The codes in the data set do not have state-of-the-
art performance. It would be interesting to apply the method to more recent constructions that have
improved performance. We hope that the NN will then be able to generate some even better codes.

©AI4CODE, October 2022 Page 15 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

This would answer to the question : "Can NN improve the state-of-the-art polar codes constructions
o1

Another interesting aspect of the method is that it includes the decoder in the learning process. One
can change the floating-point SCL decoder used for the FER performance to a more practical decoder
with limited list size, quantized LLRs. This will bring the code construction closer to implementation
perspectives. We could also take into account the decoding tree structure in order to generate codes
that are more "prunable" and thus less complex to decode.

Finally, on a longer perspective, we would investigate other types of decoders such as BP or permu-
tation based decoders. In the latter case, it would be interesting to generate efficient automorphisms of
a given polar code or alternatively devise a polar code given a set of hardware-friendly automorphisms.

3.3 Joint interleaving and puncturing learning

The coding solutions in applications such as Internet of Things (IoT) are expected to use short frame
sizes, low code rates while achieving excellent performance under low SNR. For traditional Turbo
code construction methods, coding theoretic measures do exist to predict code performance and to
assist code design (i.e. EXIT charts, distance spectrum). However, these do not yield conclusive
results for smaller frame sizes on one side and are extremely complex to apply for large frame sizes on
the other. Indeed for small frame sizes, there is no known code parameter that captures accurately
the convergence behavior under iterative decoding. For large frame sizes, impulse-based methods,
classically used for distance spectrum estimate, become extremely time and resource consuming to
apply for obtaining accurate results. Both these facts advocate resorting to extensive Monte-Carlo
simulations for code design.

For Turbo Codes, an interleaver construction constrained by puncturing patterns and applying
protographs has been proposed by members of the AI4CODE team [49]. This layered construction
answered implementation constraints for the first flexible Turbo decoder with a throughput of more
than 100 Gb/s [50] developed in the context of the H2020 EPIC project. Obtained results confirmed
the strengths of such a construction as well as the need to tailor the interleaver design to the considered
decoding algorithm.

By using Machine/Deep Learning methods, AI4CODE intends to bridge the gap between a struc-
tured methodical construction of the code and the current trial and error approach based on a-
posteriori evaluation of code properties. Using Reinforcement Learning (RL) and genetic algorithms,
AT4CODE will build upon the experience and results gathered in EPIC, focusing on layered code
constructions for small frame sizes of a few hundred bits. We will start by evaluating the suitability
of Machine Learning techniques and genetic algorithms for Al-aided layered Turbo code interleaver
design. This will be followed by identifying suitable known joint interleaver and puncturing parame-
ters as input for the most promising Al-methods. As evidenced by preliminary results obtained in the
EPIC project, maintaining the connection with the decoding algorithm is critical, since sub-optimal
decoding has an increased impact on the convergence behavior of the designed codes. The efficiency
of the design procedure will be assessed through the classification of the designed codes into poor and
good performance categories. This classification will resort to the evaluation of performance through
Monte Carlo simulations or through the evaluation of some code design metrics such as the minimum
distance when possible.

3.4 Joint design of code and modulation

For IoT applications, Non-Binary Turbo Codes (NB-TC) over Galois Fields GF(q) have been shown
to have considerable potential to outperform the binary case [51] thanks to their excellent performance
for short frame sizes. Moreover, they can be mapped directly to the corresponding modulation symbols
of higher order modulation schemes, hence profiting from an improved association between the code
and the constellation. In fact, the cardinality of the used Galois field offers a new degree of freedom
compared with binary codes. Inspired by the intra-symbol permutation introduced for double-binary

Page 16 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

TCs, previous works from AI4CODE team found a transformation function that, when applied to the
input data of one of the component encoders lowers the error floor of NB-TCs without entailing any
penalty to their convergence threshold [51].

In other recent works, we proposed a new approach to optimize non-uniform constellations for
NB codes, targeting improved performance of the underlying coded modulation [47]. In particular,
deep Q-learning algorithms were applied to solve the intractable problem of enumerating all possible
candidate high-order constellations. Results have shown that non-uniform constellations designed in
this manner significantly improve the error correcting performance asymptotically. The two approaches
of Al-aided non-uniform constellation design and symbol transformation for NB-TC shall be combined
in a joint design during this work to improve the performance of the joint code/constellation design.
Now tailored for the NB-TC, the resulting constellation is expected to improve performance of the
coded modulation, especially at low error rates and high coding rates.

3.5 Design of LDPC codes for deep unfolded non linear coded mod-
ulation

We will consider code nonlinear modulation schemes involving LDPC codes for which iterative decod-
ing is mandatory to operate close to the fundamental limits (typically orthogonal or quasi-orthogonal
modulations). In this context, we intend to design a deep-unfolded coded architecture which consists
in alternating some SISO detection layers with some SISO channel decoding layers. This can be seen
as the design of a fully unrolled serially concatenated coded modulation scheme. If detection layer
will be considered of only one type, we will address the design of the channel code layers to be used
in this unrolled architecture. Quantized scheme could be also envisioned.

©AI4CODE, October 2022 Page 17 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

4 General Conclusion

The advent of deep learning and the continuous improvements in large-scale computing capabilities
over the past decade have fuelled a resurgence of interest in applying machine learning techniques to
a variety of communication problems. The availability of off-the-shelf learning software packages now
makes it possible to parameterize communication systems and algorithms or even replace them by
generic, black-box deep neural networks, and to train them to perform at least as well as the state-of-
the-art. Application to channel code design and decoding is no exception to this general trend. Yet
the application of ML to channel coding is still in its early stages, and its potential benefits for the
field far from being sufficiently investigated and understood.

This deliverable aimed at specifying channel code design problems for which ML could be a game
changer. After discussing the opportunities for machine learning in coding theory, a broad state-of-the-
art review of ML-assisted FEC design has been provided, with an emphasis on recent advances in ML-
based design of LDPC, Turbo, Polar, algebraic codes, and also coded modulations. Areas for potential
improvements have been identified for each code family, and will be the subject of forthcoming studies
in this WP. The main driver underlying those studies is to learn from the machine, and eventually
come up with new theoretical hindsight to refine and improve existing code design methods and tools.

Page 18 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

Bibliography

1]

2]

8]

[9]

[13]

[14]

[15]

[16]

T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans-
actions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, 2017.

Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical layer communications,”
IEEE Wireless Communications, vol. 26, no. 2, pp. 93-99, 2019.

C. She, C. Sun, Z. Gu, Y. Li, C. Yang, H. V. Poor, and B. Vucetic, “A tutorial on ultrareliable and
low-latency communications in 6g: Integrating domain knowledge into deep learning,” Proceedings
of the IEEFE, vol. 109, no. 3, pp. 204246, 2021.

S. Cammerer, F. A. Aoudia, S. Dérner, M. Stark, J. Hoydis, and S. Ten Brink, “Trainable com-
munication systems: Concepts and prototype,” IEEE Transactions on Communications, vol. 68,
no. 9, pp. 5489-5503, 2020.

J. Hoydis, S. Cammerer, F. A. Aoudia, A. Vem, N. Binder, G. Marcus, and A. Keller, “Sionna: An
open-source library for next-generation physical layer research,” arXiv preprint arXiv:2203.1185/,
2022.

AI4CODE Project (ANR-21-CE25-0006), “Design space exploration for ml-augmented decoding,”
Deliverable D3.1, Dec. 2022.

H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via deep learning,” IFEFE
Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 5-18, 2020.

Y.-H. Kim, A. Lapidoth, and T. Weissman, “The gaussian channel with noisy feedback,” in 2007
IEEE International Symposium on Information Theory. TEEE, 2007, pp. 1416-1420.

M. C. Cogkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F. Steiner, “Efficient
error-correcting codes in the short blocklength regime,” Physical Communication, vol. 34, pp.
66-79, 2019.

R. J. McEliece, “Are turbo-like codes effective on nonstandard channels?” IEEFE Information
Theory Society Newsletter, vol. 51, no. 4, pp. 1-8, 2001.

G. Liva and Y. Polyanskiy, “On coding techniques for unsourced multiple-access,” in 2021 55th
Asilomar Conference on Signals, Systems, and Computers. 1EEE, 2021, pp. 1507-1514.

F. Kazemi, E. Karimi, E. Soljanin, and A. Sprintson, “A combinatorial view of the service rates
of codes problem, its equivalence to fractional matching and its connection with batch codes,” in
2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020, pp. 646-651.

P.-N. Chen, H.-Y. Lin, and S. M. Moser, “Nonlinear codes outperform the best linear codes on the
binary erasure channel,” in 2015 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2015, pp. 1751-1755.

A. V. Makkuva, X. Liu, M. V. Jamali, H. Mahdavifar, S. Oh, and P. Viswanath, “Ko codes:
inventing nonlinear encoding and decoding for reliable wireless communication via deep-learning,”
in International Conference on Machine Learning. PMLR, 2021, pp. 7368-7378.

L. Huang, H. Zhang, R. Li, Y. Ge, and J. Wang, “Ai coding: Learning to construct error correction
codes,” IEEE Transactions on Communications, vol. 68, no. 1, pp. 26-39, 2019.

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, “Learn codes: Inventing low-
latency codes via recurrent neural networks,” IEEE Journal on Selected Areas in Information
Theory, vol. 1, no. 1, pp. 207-216, 2020.

©AI4CODE, October 2022 Page 19 of (22)

D2.1: Design Space Exploration for ML-Augmented Decoding

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

N. A. Letizia and A. M. Tonello, “Capacity-driven autoencoders for communications,” IEEE Open
Journal of the Communications Society, vol. 2, pp. 1366—1378, 2021.

R. Wiesmayr, G. Marti, C. Dick, H. Song, and C. Studer, “Bit error and block error rate training
for ml-assisted communication,” arXiv preprint arXiv:2210.14103, 2022.

Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic
neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode: Feedback codes via deep
learning,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 194206,
2020.

Y. Shao, E. Ozfatura, A. Perotti, B. Popovic, and D. Gunduz, “Attentioncode: Ultra-reliable
feedback codes for short-packet communications,” arXiv preprint arXiv:2205.14955, 2022.

A. Elkelesh, M. Ebada, S. Cammerer, L. Schmalen, and S. Ten Brink, “Decoder-in-the-loop:
Genetic optimization-based ldpc code design,” IEEE access, vol. 7, pp. 141 161-141 170, 2019.

G. Larue, L.-A. Dufrene, Q. Lampin, H. Ghauch, and G. R.-B. Othman, “Neural belief propaga-
tion auto-encoder for linear block code design,” IEEE Transactions on Communications, vol. 70,
no. 11, pp. 7250-7264, 2022.

M. Zhang, Q. Huang, S. Wang, and Z. Wang, “Construction of ldpc codes based on deep re-
inforcement learning,” in 2018 10th International Conference on Wireless Communications and
Signal Processing (WCSP). 1EEE, 2018, pp. 1-4.

E. Nisioti and N. Thomos, “Design of capacity-approaching low-density parity-check codes using
recurrent neural networks,” arXiv preprint arXiv:2001.01249, 2020.

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, “Turbo autoencoder: Deep
learning based channel codes for point-to-point communication channels,” in 2019 33rd Confer-
ence on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, Dec. 2019.

H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via deep learning,” IFEFE
Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 5-18, 2020.

H. Yildiz, H. Hatami, H. Saber, Y.-S. Cheng, and J. H. Bae, “Interleaver design and pairwise
codeword distance distribution enhancement for turbo autoencoder,” in 2021 IEEE Global Com-
munications Conference (GLOBECOM). Madrid, Spain: IEEE, Dec. 2021.

K. Chahine, Y. Jiang, P. Nuti, H. Kim, and J. Cho, “Turbo autoencoder with a trainable in-
terleaver,” in 2022 IEEE International Conference on Communications (ICC). Seoul, Korea:
IEEE, Aug. 2022, pp. 3886-3891.

J. Clausius, S. Dorner, S. Cammerer, and S. ten Brink, “Serial vs. parallel turbo-autoencoders
and accelerated training for learned channel codes,” in 2021 11th International Symposium on
Topics in Coding (ISTC), Montreal, Canada, Sep. 2021.

J. Clausius, M. Geiselhart, and S. t. Brink, “Optimizing serially concatenated neural codes with
classical decoders,” arXiv preprint arXiw:2212.10355, 2022.

Y. Jiang, H. Kim, H. Asnani, S. Oh, S. Kannan, and P. Viswanath, “Feedback turbo autoencoder,”
in 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Barcelona, Spain: IEEE, May 2020, pp. 8559-8563.

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, “Joint channel coding and
modulation via deep learning,” in 2020 IEEFE 21st International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC). Atlanta, GA, USA: IEEE, May 2020, pp. 1-5.

Page 20 of (22) ©AI4CODE, October 2022

D2.1: Design Space Exploration for ML-Augmented Decoding

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for sym-
metric binary-input memoryless channels,” IEEFE Transactions on Information Theory, vol. 55,
no. 7, pp. 3051-3073, 20009.

Y. Liao, S. A. Hashemi, J. M. Cioffi, and A. Goldsmith, “Construction of polar codes with
reinforcement learning,” IEFE Transactions on Communications, vol. 70, no. 1, pp. 185-198,
2021.

I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions on Information Theory,
vol. 59, no. 10, pp. 6562-6582, 2013.

A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Genetic algorithm-based polar code
construction for the awgn channel,” in SCC 2019; 12th International ITG Conference on Systems,
Communications and Coding. VDE, 2019, pp. 1-6.

A. Elkelesh, M. Ebada, S. Cammerer, and S. Ten Brink, “Decoder-tailored polar code design using
the genetic algorithm,” IEFEE Transactions on Communications, vol. 67, no. 7, pp. 4521-4534,
2019.

B. Li, H. Shen, and D. Tse, “A rm-polar codes,” arXiv preprint arXiv:1407.5483, 2014.

P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans. on Comm., vol. 60,
no. 11, pp. 3221-3227, 2012.

G. He, J.-C. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang, Y. Ge, R. Zhang et al.,
“Beta-expansion: A theoretical framework for fast and recursive construction of polar codes,” in
GLOBECOM 2017-2017 IEEE Global Communications Conference. 1EEE, 2017, pp. 1-6.

M. Ebada, S. Cammerer, A. Elkelesh, and S. Ten Brink, “Deep learning-based polar code design,”
5Tth Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019.

Y. Liao, S. A. Hashemi, H. Yang, and J. M. Cioffi, “Scalable polar code construction for suc-
cessive cancellation list decoding: A graph neural network-based approach,” arXiv preprint
arXiw:2207.01105, 2022.

M. Léonardon and V. Gripon, “Using deep neural networks to predict and improve the perfor-
mance of polar codes,” in 2021 11th International Symposium on Topics in Coding (ISTC), 2021,

pp. 1-5.

L. Huang, H. Zhang, R. Li, Y. Ge, and J. Wang, “Reinforcement learning for nested polar code
construction,” in 2019 IEEE Global Communications Conference (GLOBECOM). 1EEE, 2019,

pp. 1-6.

Y. Li, Z. Chen, G. Liu, Y.-C. Wu, and K.-K. Wong, “Learning to construct nested polar codes:
An attention-based set-to-element model,” IEEE Communications Letters, vol. 25, no. 12, pp.
3898-3902, 2021.

R. Klaimi, S. Weithoffer, and C. A. Nour, “Improved non-uniform constellations for non-binary
codes through deep reinforcement learning,” in 2022 IEEE 23rd International Workshop on Signal
Processing Advances in Wireless Communication (SPAWC), 2022, pp. 1-5.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel, “Value-decomposition networks
for cooperative multi-agent learning,” CoRR, vol. abs/1706.05296, 2017. [Online]. Available:
http://arxiv.org/abs/1706.05296

R. Garzén-Bohoérquez, C. Abdel Nour, and C. Douillard, “Protograph-based interleavers for punc-
tured turbo codes,” IEEE Transactions on Communications, vol. 66, no. 5, pp. 1833-1844, 2018.

©AI4CODE, October 2022 Page 21 of (22)

http://arxiv.org/abs/1706.05296

D2.1: Design Space Exploration for ML-Augmented Decoding

[50] S. Weithoffer, O. Griebel, R. Klaimi, C. A. Nour, and N. Wehn, “Advanced hardware architec-
tures for turbo code decoding beyond 100 gb/s,” in 2020 IEEE Wireless Communications and
Networking Conference (WCNC), 2020, pp. 1-6.

[51] R. Klaimi, “Study of non-binary turbo codes for future communication and broadcasting
systems,” Ph.D. dissertation, 2019, phD Thesis at Mathematical and Electrical department of
IMT Atlantique. [Online|. Available: http://www.theses.fr/2019IMTA0141/document

Page 22 of (22) ©AI4CODE, October 2022

http://www.theses.fr/2019IMTA0141/document

	Introduction
	Opportunities and challenges for ML-based code design
	Why learning to code ? The many opportunities raised by AI
	Incentives and obstacles for trainable communications
	Better matching with the channel
	Better matching with the decoder
	Being more efficient at constructing capacity-approaching codes
	Finding new codes
	Or improving upon existing ones

	Challenges ahead
	Scope of the AI4CODE project

	Review of State-of-the-Art ML-assisted Code Design
	LDPC Codes
	Turbo Codes
	The turbo autoencoder (TurboAE) baseline
	Further improvements to the TurboAE approach
	Extension of the TurboAE approach

	Polar Codes
	Coded Modulation

	Summary of the Planned Contributions
	Decoder-aware short LDPC code design
	Design of Polar codes optimized for both decoding and implementation performance
	Joint interleaving and puncturing learning
	Joint design of code and modulation
	Design of LDPC codes for deep unfolded non linear coded modulation

	General Conclusion
	Bibliography

