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Abstract
This report discusses the learning-based code design methods proposed to address the limitations
identified in D2.1, their evaluation, and the analysis of the learning outputs. It encompasses the re-
search work carried out in Tasks 2.2 and 2.3 of the Work Package 2 (WP2) by the project’s partners.
WP2 aims to investigate how learning techniques can help come up with new code design paradigms
or discover new code constructions, with application to selected communication scenarios that impose
challenges on FEC code design that are not fully met with existing methods.
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Introduction

Work Package 2 (WP2) of the AI4CODE project investigates how learning techniques can
help come up with new code design paradigms or discover new code constructions with application
to selected communication scenarios that place challenges on FEC code design that existing methods
can address only partially at best. The updated Gantt chart of WP2 is given in Fig. 1.

Figure 1: Gantt diagram of WP2

The first deliverable D2.1 entitled "Specification of the code design problems" reported activities
from Task 2.1. It aimed to specify channel code design problems for which ML could be a game-
changer. It provided a state-of-the-art review and gave some research directions.

This report encompasses the work carried out in Tasks 2.2 and Task 2.3 of the Work Package 2
(WP2) by the project’s partners during the first two years of the project. Both Tasks are related to
the investigation of new learning-based code or modulation design methods, the evaluation of these
methods, and the analysis of the learning outputs.

The deliverable comprises three main sections, each dedicated to a particular study, and a general
conclusion.

Section 1 provides a summary of the optimization efforts undertaken for the construction of good
sequences for Cyclic Code Shift-Keying (CCSK) modulation, which a particular form of robust spread-
spectrum waveform that is particularly appealing for IoT communication. We begin by outlining the
problem to be addressed and then proceed to illustrate how machine learning gradually revealed the
symmetries inherent in optimal solutions. This iterative process led us to a comprehensive under-
standing of the mathematical formalism, leading to the definition of the C4-sequence (a modulation
scheme that has been patented).

Section 2 describes how deep reinforcement learning may be used to tackle the difficult problem
of optimizing the mapping between the code symbols of a powerful non-binary code, e.g. turbo or
LDPC codes, and the modulated symbols of a high-order constellation. Two different approaches are
proposed and investigated: (1) an approach that optimizes non-uniform constellation for NB-codes
via multi-agent reinforcement learning, (2) An approach using an optimized symbol transformation
function that is added to the NB-TC encoder. In both cases, the results show significant improvement
in the error floor region, compared to previous designs.

Section 3 investigates how to use supervised learning to generate polar codes with better perfor-
mance under successive-cancellation list (SCL) decoding. The crux of polar code construction is to
find the best frozen set for the current channel state, target code rate, and selected decoding algo-
rithm. The proposed approach uses a two-step process in which a neural network is first trained to
predict the code performance for a given frozen set in input. Then the process is reversed: the frozen
set in input is optimized to minimize the predicted FER at the trained model output. Previous work
already demonstrated promising performance improvement with this approach. Here the process is
fine-tuned by training the neural network on an improved dataset made of frozen sets that already
have good performance under SCL decoding. The goal is to push even further the performance of
the new generated sequences. Then we shift our focus to designing improved polar-augmented con-
volutional (PAC) codes that can approach or even reach maximum-likelihood decoding (MLD) under
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complexity-constrained SCL decoding. The proposed approach, which optimizes the frozen sequence
based on the minimum distance and list size constraints, successfully identifies configurations that
achieve near-MLD performance with a list size only half as large.
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1
Learning to design sequences with good correlation
properties (and rediscovering string art)

This section provides a summary of the optimization efforts undertaken for construction of CCSK
sequences robust to truncation. We begin by outlining the problem to be addressed and then proceed
to illustrate how machine learning gradually revealed the symmetries inherent in optimal solutions.
This iterative process led us to a comprehensive understanding of the mathematical formalism, leading
to the definition of the C4-sequence.

Related publications. The corresponding modulation scheme has been patented, and published
in:

[B24] E. Boutillon, “Constellations Cross Circular auto-Correlation C4-sequences,” in IEEE Trans-
actions on Communications, vol. 72, no. 12, pp. 7664–7673, Dec. 2024.

Further on-going work on this topic and its application to industry is currently carried out within the
framework of the project C4xG supported by the FRench progrAm of IP Massification for Europe in
xG (FRAME xG).

1.1 The problem of optimizing CCSK sequences

The well known Zadoff-Chu (ZC) sequences [1], [2] are widely used in communication systems (like the
3GPP standards). They consist in a sequence of unitary complex symbols of length q that has an opti-
mal auto-correlation function, i.e., the scalar product between the root sequence z = (z(n))n=0,1,...,q−1
and any circularly rotated version za = z(n + a mod q) is equal to q if a = 0 mod q, 0 otherwise.
This property guaranty that the distance between two distinct rotated ZC sequences is equal to 2q,
which make them optimally separable. This property is used in the 3GPP RACH channel (Random
Access Channel) to establish a link between a base station and a device with the ALOHA protocol.
However, ZC sequences do not support truncation: even with a moderate truncation lengths l, the
minimum distance between rotated and truncated sequences fades very rapidly.

Our motivation was to discover new types of sequences that maintain significant distance when
truncated. This property is very useful in several communication scenarios [3], [4]. The problem can
be formalized mathematically. Let x be a complex sequence of length q and of average energy 1. Let
us defined the minimum normalized square distance D2

l (x) between two distinct length-l truncated
and rotated versions of x, i.e.,

D2
l (x) = 1

l
min

a,b,a̸=b
{
∥∥∥xa+l−1

a − xb+l−1
b

∥∥∥2
}. (1.1)

with xa+l−1
a = (x(n + a mod q)n=0,1,...,l−1. The problem can be formulated as find x so that∑q

l=0D
2
l (x) is maximized (the truncated sequences keep a high distance between each other).

1.2 Machine learning techniques

At the outset of our study, we had no clear direction on how to construct an optimal sequence. The pos-
sibility of surpassing the ZC sequence was even uncertain. Collaborating with our colleague Alexandru
Olteanu, an expert in operational research, we turned to machine learning, more particularly genetic
algorithms, to optimize the cost function associated with our problem. Promising solutions began
to emerge, especially for small values of q (initially 8, then 16). Upon analyzing these solutions, we
observed certain symmetries, prompting us to introduce additional constraints in the machine learning

Page 6 of (35) ©AI4CODE, October 2025



D2.2: Learning-based code and coded modulation design methods

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5
Example of C4-sequence

Figure 1.1: Example of a C4-sequence of size q = 64 generated with the seed vector s =
(25, 23, 0, 11, 11, 24, 8, 22) (figure taken from [5]).

tools to limit the solution space accordingly. This refinement enabled us to discover optimal solutions
for larger sizes (q = 32, then q = 64). Subsequently, we realized that these solutions belonged to an al-
ready documented family associated with string art patterns [4]. This insight empowered us to devise
optimal solutions for any value of q. Further analysis of the mathematical properties of these optimal
solutions provided the key to a more general construction of optimal sequences: the C4-sequences.

In essence, the application of machine learning techniques played a pivotal role in uncovering the
solution to the broader problem of sequence construction.

1.3 Definition of C4-sequences

A constructive method to build C4-sequence is given in Algorithm 1. This result has been presented
in [5].

Algorithm 1 Generation of a C4-sequence of length q by the function x = G(s)
Input A seed vector s of size p = q/4 composed of q/4 reals on the interval [0, q[, a value of c in the
set {−1, 1}.
Output A clockwise (c = 1) or anti-clokwise (c = −1) C4-sequence x of length q

for k ← 0 to q/4− 1 do
Es(k)←

√
4q × exp(2πj s(k)

q )
end for
X← kron(Es, [0, 1−c

2 , 0, 1+c
2 ])

x← F−1(X)
Return x

Fig. 1.1 and Fig. 1.2 give two examples of C4-sequences, the first one is of size q = 64 which is
non-unitary and the second one of size q = 128 where the points belong to the unit circle.

Fig. 1.3 compares the evolution of D2
l between a ZC sequence and a C4-sequence of Fig. 1.1. As

can be seen, the C4-sequence outperforms the ZC sequence while having the same optimal property
(i.e. maximum distance between two rotated versions) for l = q.
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Figure 1.2: Example of unitary C4-sequence of length q = 128 (figure taken from [5]).
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Figure 1.3: Evolution of the minimum square distance between C4-sequence x and a ZC sequence z
for truncation lengths l = 1 to l = q (figure taken from [5])
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Figure 1.4: Example of optimized C4-constellations for Mutual Information (MI). For 0 dB of SNR
(a) MI = 0.9998 bit/s/Hz while the channel capacity C is of 1 bit/s/Hz. For 5 dB of SNR (b), MI =
2.0536 bit/s/Hz, C = 2.057 bit/s/Hz). For 10 dB of SNR (c), MI = 3.419157 bit/s/Hz, C = 3.4594
bit/s/Hz.

1.4 Potential applications of C4-sequences
C4-sequences can have several applications in a communication system. Firstly, they can be used on
their own as an alternative to Zadoff-Chu sequences. Secondly, the constellation associated with a
C4-sequence can be shaped to maximize the mutual information through the AWGN channel, thereby
providing geometric shaping gain (see Fig. 1.4. Finally, the concatenation of an outer non-binary code
with a truncated C4-sequence as an inner code presents a very efficient and flexible communication
scheme. While having a fixed outer code, the choice of truncation length provides a versatile tool
for closely adapting the overall coding rate to the channel condition. It’s worth mentioning that this
flexibility can be effectively exploited in a hybrid-automatic request (H-ARQ) communication system.
Finally, C4-sequences can be extended to create C3-sequences or C5-sequences.
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2
A reinforcement learning approach to joint code and
modulation design

Non-binary FEC codes reveal their potential to outperform their binary counterparts in case of a
one-to-one mapping between code symbols over Galois Fields GF(q) and constellation points of the
same order. As layed out in section 3.4 of deliverable D2.1 [6], this improved performance is owed to
a better association between the code and the constellation. The quest for the best association should
factor-in the competing sequences of symbols that constitute what we call Diverging-Converging (DC)
sequences [7] and have the lowest Cumulated Euclidean Distances (CED). One way to improve the
error rate performance lies in adapting the Euclidean distance between constellation points to lower
the error probability of the most impacting DC sequences (i.e. having the lowest CED and/or the
highest multiplicity when computing the union bound). Fully listing the DC sequences with their
corresponding multiplicities is not tractable for the considered codes, it is therefore difficult to achieve
such an improvement especially that sub-optimal listing techniques that aim to provide a truncated
DC listing do not offer any guarantees regarding performance.

In the following we describe two approaches to further improve on this association between non-
binary turbo codes (NB-TCs) and higher order constellations: (1) An approach that optimizes non-
uniform constellation for NB-codes via multi-agent reinforcement learning[8], (2) An approach using
an optimized symbol transformation function that is added to the NB-TC encoder. The combination
of the two approaches is tackled in ongoing work.

2.1 Target code design problem and learning approach

Figure 2.1 (a) shows the structure of the one-memory element non-binary convolutional codes (NB-
CCs) which serve as the component codes for the NB-TC illustrated in Figure 2.1 (b). The coefficients
a1, a2 and a3 in Fig. 2.1 are the GF(q) recursion and feed-forward coefficients designed to optimize the
Euclidean distance spectrum conditioned by the q-QAM constellation. Note in Figure 2.1 (b), a Symbol
Transformation Γ is additionally employed to improve performance [9]. By modifying the values of
encoded symbols by one component code with respect to the other, the aim of this transformation
is to avoid reproducing error-prone sequences while taking into account the effect of the interleaver.
Systematic s and parity p symbols (see annotated code trellis in Fig. 2.1) are mapped to a q-QAM

Figure 2.1: (a) NB-CC Encoder (b) NB-TC Encoder (with Transformation Γ) (c) Trellis of a GF(4)
recursive NB-CC.

constellation, of the same order as the considered GF(q) for the NB code. Without loss of generality,
NB-TCs over GF(64) (primitive polynomial PGF(64)(D) = 1 + D2 + D3 + D5 + D6) and 64-QAM
constellations are considered in what follows. In order to achieve the best coded modulation capacity,
the output symbols of the NB-TCs are to be mapped to a high-order constellation of the same order.
In our case, NB-TCs over GF(64) are mapped to a 64-QAM constellation, initially respecting a gray
mapping.

Following the methodology from [8], we apply the multi-agent DQN algorithm [10, 11] to try to
jointly optimize (1) the positions of all constellation symbols for a non-uniform constellation, (2)

Page 10 of (35) ©AI4CODE, October 2025



D2.2: Learning-based code and coded modulation design methods

the symbol transformation function that is added to the NB-TC encoder [9] with respect to the
uniform constellation and (3) The combination of the two approaches. In particular, for each of the
64 constellation points, we deploy a learning agent. We train the resulting multiple DQN agents in
parallel in order to jointly optimize a single total reward called the team reward. In our study case
over GF(64) and a 64-QAM constellation, we apply 64 DQN learning agents in parallel to optimize
the minimum Euclidean distance of the NB-CC.

Using multi-agent DQN learning enables optimizing in parallel the minimum distance for each non-
binary constellation symbol while considering joint effects for symbol positioning in terms of a constant
total average energy per symbol and code spectrum. We recall that the minimum CED of a NB-CC
can be calculated from short DC sequences as explained in [7]. Therefore, the contribution of each
non-binary symbol to the minimum distance of the code can be assessed through the enumeration of
all short DC sequences that have at least one of their transitions labeled by the NB symbol in question.
The key problem to solve is to find a suitable reward function that is able to positively impact the
most relevant short DC sequences.

Proposed reward for joint optimization of non-uniform constellation and code

In [8], we proposed a coefficient δ(si), ∀si ∈ GF(q), that represents the contribution of the NB symbol
si in the distance spectrum of the NB-CC:

δ(si) = dmin(si)
n(dmin(si))

(2.1)

where dmin(si) is the minimum distance observed from short DC sequences having si as label of one of
its transitions, and n(dmin(si)) is the number of occurrences of this minimum distance. Whenever the
minimum distance, dmin(si) increases or its number of occurrences n(dmin(si)) decreases, the effect of
the NB symbol si on the distance spectrum and hence performance of the NB-CC is reduced: this
corresponds to large values of δ(si). Consequently, the value of δ(si) gives an insight about the impact
of si on the performance of the code. We use δ(si) as the reward function for the agent in-charge
of choosing the position the symbol si in signal space. Moreover, the final goal is to optimize a
team reward which we define as the maximization of min(δ(si)), ∀si ∈ GF(q). By maximizing the
minimum value of δ(si), we are able to optimize the spectrum of the resulting coded modulation
(minimum distance and multiplicity) which represents one step further from the sole maximization of
the minimum distance.

Proposed reward for optimization of the Symbol transformation

Following a similar approach as in [8], we describe a reward function for the agent which is now
choosing the symbol mappings Γ(Si) and Γ(Sj) for one symbol pair (Si, Sj):

δ(Si, Sj) = d2(Si, Sj) + d2(Γ(Si),Γ(Sj)) + d2
c(Si, Sj)

n(dc)
(2.2)

where n(dc) is the number of occurrences of this minimum distance.

2.2 Learning results

For the evaluation of the learning approaches in Section 2.1, we start from two NB-TCs as listed in
Table 2.1. Note, that the codes C1 and C2 are the best and worst codes in terms of their CED truncated
spectrum with the two first terms of the squared Euclidean distance d2

1 and d2
2 and the corresponding

multiplicities n(d1) and n(d2) for a uniform 64-QAM constellation obtained by the classical method
from [9]. In fact, the performance of any other code would lie between the ones obtained by C1 and
C2, hence bounding the achievable performance. These codes, together with a symbol transformation
obtained by the methods outlined in [9] serve as a baseline to evaluate our learning approach.

©AI4CODE, October 2025 Page 11 of (35)
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Table 2.1: Best and worst obtained codes over GF(64), with the two first terms of the squared
Euclidean distance spectra d2

1 and d2
2 and the corresponding multiplicities n(d1) and n(d2).
Code C1 C2

(a1, a2, a3) (41, 2, 0) (31, 5, 18)
d2

1 (d2
min) 0.38 1.52

n(d1) 238422 652698
d2

2 0.57 1.61
n(d2) 230886 1084014

2.2.1 Joint optimization of non-uniform constellation and code

In the case of the NB-TC using C1 from Table 2.1 as a constituent code, Almost Regular Permutation
(ARP) interleaver is used as a permutation function respecting the constraints of [12, 13]. Fig. 2.2a
shows a modified constellation that respects the mapping of a 64-QAM while maximizing the minimum
distance of the NB-CC C1 of Table 2.1. Figures 2.2b and 2.2c show the impact of each NB symbol
in the error prone sequences of the code computed according to Eq. (2.1). The value of 1 − δ(si) is
computed, normalized for each NB symbol si and associated with a color. The larger the impact of
si on the spectrum of the code, the warmer its color and vice versa generating a heat map. Thanks
to the application of the proposed method, we can observe from Fig. 2.2c that for the obtained non-
uniform constellation, the effect of the majority of the constellation symbols is reduced by increasing
the minimum distance in which they participate and/or by reducing their occurrence in error-prone
sequences. Consequently, a mapping of the considered NB code symbols to the modified constellation
of Fig. 2.2a can be expected to lead to an improved error correcting performance.

(a) (b) (c)

Figure 2.2: (a) Optimized symbol position for 64-QAM constellation and code C1. (b) and (c) Heat-
maps representing the contribution of each NB symbol in the minimum distance of the code for a
conventional 64-QAM and for the modified 64-QAM, respectively.

A comparison between the error correcting performance of the resulting NB-TC mapped to the
conventional 64-QAM constellation and to the modified 64-QAM (a) is depicted in Fig. 2.3. Indeed,
applying the modified constellation, the error floor region of the considered NB-TC is lowered by
about one decade, achieving a Frame Error Rate (FER) of 10−7.

2.2.2 Optimization of the Symbol transformation

We evaluate the symbol transformation obtained in Task 2.2 for code C1 and compare it against the
baseline in Fig. 2.3 (a). We recall that C1 being the worst obtained code for GF(64) illustrates the
power of the symbol transformation Γ, which allows to lower the error floor by already 2 decades
for the baseline case. However, our initial results show, that another decade of improvement can be
obtained by employing the learning methods used in Task 2.2.
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Figure 2.3: FER performance of the code C1 with 64-QAM and Symbol Transformation, (a) With
Classical Transformation and Shaping (b) With Optimized Transformation

2.3 Conclusion
In this work, we have proposed a new approach to optimize non-uniform constellations for NB codes,
targeting better coded modulation performance. In particular, deep Q-learning algorithms are chosen
to solve the intractable problem of enumerating all possible candidate high-order constellations. On
the example of NB-TCs, we show that designed non-uniform constellations improve the error cor-
recting performance asymptotically. This proof-of-concept clearly illustrates how ML techniques can
provide solutions to complex code design tasks, which motivates to consider additional/alternative
design parameters that can target not only asymptotical performance improvement, but also extend
to hardware-related constraints. To complement these promising results, jointly optimizing the code
construction and the positions of constellation symbols through DQN algorithms may represent a
significant milestone.
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3 Polar Code design tailored to SCL decoding

Introduction

Polar code [14] construction is a core process to improve the error-correction performance. This
involves the splitting of an input vector into two subsets : the information set, conveying the data,
and the frozen set, consisting of a predetermined values usually set to zero. The intricate challenge
in polar code design lies in accurately discerning, based on the encoding rate and the code length,
whether a specific position is better suited for a frozen bit or an information bit. This is fundamental
to optimizing error-correction performance, tailored to a specific transmission channel and a given
decoding algorithm.

Traditional polar code construction techniques exploited the subchannel polarization phenomenon
to rank bit channels by reliability. This strategy, primarily designed for successive-cancellation (SC)
decoding, prioritized the selection of the most reliable channels for information transmission. However,
the reliance on reliability-based polar code construction did not guarantee optimal error-correction
performance for decoding algorithms apart from SC. Recent advances in polar code construction
include applying machine learning methods. In [15], a sequential method for SC list (SCL) decoding
was introduced, formalizing the process as a maze game optimized through reinforcement learning.
The game-based constructions were able to outperform the SC standard constructions of [16], for long
codes, under both SC and SCL decoding. [17] and [18] proposed genetic algorithm based constructions
which perform better than the state of the art codes in [19], [20] and [21] under SCL decoding. In [18]
a focus was made on the SC-based decoders, namely SCL, while [17] evaluates the BP decoding as
well. Apart from decoder types, the major difference between both works lies in inputs to each step
of the genetic algorithm. The genetic population in [18] was randomly initialized whereas [17] adopts
prior constructions based on the Bhattacharyya parameter [14] and RM-polar codes [20]. Authors
in [22] and [18], have placed attention on nested polar codes which meet communication system
requirements regarding memory storage. The construction problem has been modeled as a Markov
decision process. The obtained codes achieve a comparable, even better, performance compared to
the ones of [16] and [19]. In [23], a neural network architecture was built in order to predict the
error-correction performance of polar codes given their frozen bit positions. The trained network was
further used to generate more frozen bit sequences. [24] proposed a frozen set design along with
dynamic frozen bit expression design. The frozen set was compactly specified using three integers.
Results have shown that the compactly-specified polar codes with dynamic frozen bits outperform the
state-of-the-art polar code constructions under SCL decoding.

[25] adopted a straightforward neural network architecture that have demonstrated very good
performance. In this report, we will first introduce the work done in [25], explain their methodology
and present their main results. Then, we will construct a training database using the method in [24]
aiming to further enhance the performance of the new generated sequences.

3.1 Deep Neural Network (DNN) to predict polar code performance

In this section, the main results of [25] will be presented. The idea behind the article consists in training
a neural network to predict the FER of polar code constructions at a given SNR. Subsequent sections
will provide an overview of the neural network architecture and the corresponding training database.
Then the Projected Gradient Descent (PGD) methodology used to generate new polar constructions
will be introduced. Finally, the main results and contributions will be presented and discussed.
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3.1.1 A Multilayer Perceptron (MLP) network

The MLP is a fully connected network represented by composing together many perceptrons, also
called neurons, in a so called layer. A perceptron computes a linear function of an input followed by
a none linearity, referred to as an activation function.

n(x) = σ
(
wTx + b

)
= σ

(∑
i

wixi + b

)
(3.1)

where x is the input vector, w and b are the trainable weights, and σ is the activation function.

Thus, one layer computation can be described as the multiplication of the weight matrix W,
whose rows correspond to the trainable weights of one single neuron, by the input vector x (Equation
(3.2)). Consequently, the MLP architecture is fully characterized by the composition of the functions
computed by its layers (Equation (3.3)). Figure 3.1 illustrates the MLP network with l hidden layers,
which determine the depth of the architecture, the dimension of each of them hi is referred to as the
width.

n1(x) = σ (Wx + b) = σ



w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
...

wh1,1 wh1,2 . . . wh1,n



x1
x2
...
xn

+


b1
b2
...
bh1


 (3.2)

y = nt(x) = nl(nl−1(. . . (n1(x)))) (3.3)

Where x is the network input and y its output.

x1

x2

xn

n1,1

n1,2

n1,h1

n2,1

n2,2

n2,h2

nl,1

nl,2

nl,hl

y1

ym

w1,1

w1,2

w
1,

n

Input Layer
Hidden Layers

Output Layer

Figure 3.1: Multilayer perceptron network

Shortcuts have been introduced in the residual neural network (ResNet) architectures. They were
intended to address the vanishing gradient problem in very deep networks and have demonstrated very
good results, especially that they do not present additional computational complexity. They consist
in adding one of the previous outputs to the input of one layer, when the two tensors have the same
dimensions (Figure 3.2) .
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Linear

ReLU

+

Linear

ReLU

Linear

ReLU

x

F (x)

Figure 3.2: Shortcuts

3.1.2 Network training and testing

A MLP network architecture with shortcuts was adopted in [25]. The training dataset consists of
pairs of frozen bit sequences f and their corresponding FERs in logscale at a fixed SNR . A frozen bit
sequence is a binary vector whose non-zero entries correspond to the frozen positions. The sequences
were obtained from Gaussian Approximation (GA) sequence p that sorts the channels in reliability
order. A subset within the middle positions of p, whose length was chosen empirically and set to 112,
was randomly shuffled to get as many frozen bit sequences as needed (Equation (3.4)).

pπ
i = π(pi) ∀K − r ≤ i < K + r (3.4)

where K is the block length and r = 56 is the shuffling range.
The sequences were generated for code length N = 1024 and coding rate r = 1

2 at a fixed SNR =
2.7dB. Their corresponding FERs were obtained by Monte Carlo simulations using a SCL decoder
whose list size L = 32. A total of 15862 pairs were generated, 80% of which were used for training
the network. Only the 112 shuffled positions were fed to the network, the remaining positions being
constant all over the database. Note that both the dataset inputs and targets were standardized, which
means centered around the mean and reduced to a unit standard deviation. Figure 3.3 summarizes
the dataset generation methodology.

Gaussian
Approximation Shuffling Binary

Sequences
AFF3CT
toolbox

Standardizing
the shuffled

entries

K, N , SNR

p pπ f (f , FER)

(f ′, log(FER))

Figure 3.3: Dataset generation

As stated, the network input and output dimensions are respectively n = 112 and m = 1. The
architectural parameters, depth, and width, were determined through empirical experimentations.
Specifically, the depth of the network was set to l = 3. The width, the number of neurons in each

Page 16 of (35) ©AI4CODE, October 2025



D2.2: Learning-based code and coded modulation design methods

layer denoted as h, was set to h = 640 (Figure 3.1). An architecture without shortcuts has demon-
strated better performance. Training was done using ADAM gradient descent algorithm to minimize
the Mean Square Error (MSE) loss function between the output of the network and the FERs in
logscale. Figure 3.4 represents the training and validation losses throughout epochs. The model
achieves a good performance on the training set, but it seems that it does not generalize well on the
validation data, which constitutes 10% of the dataset.

Figure 3.4: Training and validation losses throughout epochs

In order to test the performance of the network on data not previously encountered (the remaining
10% of the dataset), [25] introduces the Inflation of Error (IOE) metric as defined in Equation (3.5).
The testing results are summarized in Table3.1. In average, the IOE between the estimated and the
predicted FERs is no more than 5.5%, which is smaller compared to the margin of error in Monte
Carlo simulations used for FER estimation.

IOE(f , nt) = max
{ FERf

expnt(f) ,
expnt(f)
FERf

}
− 1 (3.5)

Test loss Average IOE Worst IOE
0.0215 0.0541 0.2705

Table 3.1: Test results

3.1.3 Projected Gradient Descent (PGD) method

Projected gradient descent (PGD) method has been widely used to design inputs intending to induce
the machine learning models to make erroneous predictions. This so called adversarial examples are
corrupted versions of valid inputs, where the corruption is done by adding a small gradient-based
perturbation. This method was adapted in [25] to propose new frozen bit sequences.

After training the model and fixing all its weights, PGD method is applied to produce new inputs
that minimize the prediction of the network (FER).
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Algorithm 2 PGD algorithm to generate new frozen sequences
f ← frozen sequence random initialization
for a number of iterations I do

f̃ ← quantized version of f
y = nt(f̃)
f ← f −∇y(f̃)

end for
return f̃

3.1.4 Results

Algorithm 2 was implemented using a number of iterations I = 5000 and a training step µ = 0.1. The
resulting frozen bit sequence achieves a low FER of 10−5 at SNR = 2.7dB which is notably lower
than the minimum observed within the training dataset.

Figure 3.5: PGD construction FER vs SNR

Figure 3.5 represents the FER performance of the dataset sequences and the one generated using
PGD method. The PGD sequence outperforms remarkably the dataset constructions in the high SNR
region. It seems that the method has converged to a sequence of frozen bits whose minimum distance
is better than the sequences of the dataset.

To conclude, the selected network architecture was initially trained to predict the FER for a given
input frozen bit sequence. Subsequently, this trained network was employed to generate improved
sequences whose FER performance surpass those of the training dataset. The objective of the following
sections is to further improve the output of the PGD method in terms of FER.

3.2 Enhance the DNN newfound sequences

In order to generate more efficient sequences, the neural network needs to be trained using a distinct
database whose sequences are slightly better than the initial ones. For this purpose, we adopt the
methodology introduced in [24]. It consists in constructing polar subcodes of the Reed-Muller (RM)
codes which are characterized by three integers. In the following sections, we will first provide an
overview of the dataset construction methodology. Then, the training results and PGD performances
will be presented.
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3.2.1 The training dataset

The RM subcodes construction in [24] takes into consideration the weight distribution given a reliability
sequence r and a minimum distance dmin = 2l. The term weight refers to the Hamming weight of
the binary expansion associated with a given integer index. The frozen set consists in the indices of
weight below l, in addition to the ones of weight l and l + 1 that are tuned according to a triplet
s = (s0, s1, s2). s1 and s2 are relative values that control the number of frozen bits whose weights are
l and l + 1, respectively. s0 is a positive integer that determines the number of the highest indices of
weight l. Algorithms 3 and 4 present in detail the frozen set F construction methodology for a code
(n, k).

Algorithm 3 triplet-tuned frozen set construction
F← {i | 0 ≤ i < n,weight(i) < l} ▷ freeze all indices of weight below l
f ← n− k − s0
if |F| > f then return Failure
end if
F← FreezeWeight(n, l, s1, f, r,F) ▷ freeze indices of weight l
F← FreezeWeight(n, l + 1, s2, f, r,F) ▷ freeze indices of weight l + 1
F← FreezeWeights(n, l + 2, f, r,F) ▷ freeze indices of weight > l + 2 so that |F| = f
for s0 times do ▷ freeze the s0 highest indices of weight l

j ← max{0 ≤ i < n, i /∈ F,weight(i) = l}
F← F

⋃
{j}

end for
return F

Algorithm 4 functions
function FreezeWeight(n, l, e, f, r,F)

F′ ← FreezeWeights(n, l, f, r,F)
ti ← {i ∈ F′|weight(i) = l}
t← ti + e
if t < 0 or t >

(log2(n)
l

)
then return Failure

end if
for t times do

j ← max{0 ≤ i < n, i /∈ F,weight(ri) = l}
F← F

⋃
{ri}

end for
return F
end function

function FreezeWeights(n, l, f, r,F)
for f − |F| times do

j ← max{0 ≤ i < n, i /∈ F,weight(ri) >= l}
F← F

⋃
{rj}

end for
return F
end function

Following the triplet-tuned frozen set construction algorithm [24], we generate a total of 10200 new
frozen sequences, given the 5G reliability sequence. The specified ranges for the triplet parameters
are as follows: s0 ∈ [[0, 16]], s1 ∈ [[−15, 4]] and s2 ∈ [[−15, 14]].
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3.2.2 Network training and testing

We adopt the same MLP model as described in section 3.1. The hyperparameters were set empirically.
The depth and the width of the network are respectively l = 4 and h = 640. The shortcut gap G as
defined below is set to 2. The input of the dataset consists not only in the varying positions all along
the dataset but in the whole sequence. Consequently, the input dimension is set to 1024. This has
demonstrated better learning performances. Figure 3.6 illustrates the training and validation losses
throughout epochs. It seems that the network is able to generalize to none seen sequences, although
the training loss is not as low as the initial database loss.

Figure 3.6: Training and validation losses throughout epochs

The test loss computed for the none seen sequences (10% of the dataset) amounts to 0.0157,
which is lower than the loss observed using the initial dataset. The IOE metric is slightly worse
compared to the first results. The structure of the new dataset is entirely different from the original
one, necessitating training on the entire sequence, which increases the margin of error. Refer to Table
3.2 for a compilation of the testing results.

Test loss Average IOE Worst IOE
0.0157 0.1066 0.4091

Table 3.2: Test results

3.2.3 PGD method and results

The PGD method applied to the new trained network has generated some competitive sequences. The
best sequence was generated within a number of iterations I = 1500 with a learning rate µ = 0.05. The
FER performance is illustrated in Figure 3.7. Although the new construction performance is better
than the encountered sequences in the high SNR region, it does not outperform them by a significant
margin. In fact, while the network has succeeded in producing new remarkable constructions, the
constraints within the learning space have not facilitated notable improvements in performance.
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Figure 3.7: FER performance of PGD construction

3.3 Near-ML PAC Codes: Efficient Design with Controlled SCL
Decoding Complexity

The previous sub-sections examined how learning techniques can be used to design polar codes with
strong performance under a prescribed successive cancellation list (SCL) decoding algorithm. In this
section, we shift our focus to designing improved polar-augmented convolutional (PAC) codes that can
approach or even reach MLD under the same constraint of low-complexity SCL decoding, but adopting
an expert-driven approach this time. PAC codes can be considered as a general class of precoded polar
codes, obtained by applying a constant pre-transformation to all bits, both information and frozen.
The problem of optimal code design for PAC codes remains an open research question that has been
explored in numerous recent works [26–31]. Several of these studies [26, 27, 30], have included the
weight distribution, and particularly the minimum weight codewords, into their design methodology
due to its essential role in determining error-correction performance. This sub-section introduces a
novel approach to design PAC codes that are guaranteed to achieve ML performance with moderate
SCL list sizes. The method addresses the trade-off between error-correction performance and decoding
complexity by jointly optimizing code distance properties and list size constraints. Unlike the heuristic
and genetic-algorithm based methods that lack theoretical guarantees, the proposed approach is based
on the binary decoding tree analysis along with the Difference to True Path Metric (DTPM) of possible
paths. This enables to select frozen patterns that ensure low-complexity decoding while maintaining
good distance properties.

The work described in this section has been submitted for publication at the IEEE international
conference WCNC 2026 and is still under review at the time of this writing.

3.3.1 Polarization-Adjusted Convolutional (PAC)

Polarization-Adjusted Convolutional (PAC) codes [32] are a variant of polar codes that include a convo-
lutional pre-transformation applied to the input vector u prior to encoding. This pre-transformation,
defined by a convolutional generator polynomial g = (g0, g1, . . . , gl−1), enhances the distance proper-
ties of the resulting code [33]. The generator matrix for PAC codes is given by :
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u0
u1
u2
u3
u4
u5
u6
u7

Figure 3.8: Binary tree for a (8,4) Reed-Muller (RM) constructed polar code, depicting all valid paths
during SCL decoding. The left branches represent ui = 0 and the right branches are ui = 1. Pruned
paths (dashed branches) correspond to invalid prefixes excluded by frozen-bit constraints. The blue
paths are prefixes generating cosets in Uf6

3
= U0011 where fk = 1 if position k is frozen; otherwise,

fk = 0.

GPAC =



g0 g1 · · · gl−1 0 · · · 0

0 g0
. . . ... . . . . . . ...

... . . . . . . g1
. . . 0

... . . . g0
. . . gl−1

... . . . . . . . . . ...

... 0 g0 g1
0 · · · · · · · · · 0 0 g0


Gn. (3.6)

It should be noted that a conventional polar code is a special case of a PAC code where g = (1).

3.3.2 Successive Cancellation (SC) decoding

Under SC decoding, polar codes are provably capacity-achieving for asymptotically large block lengths
N [34]. The SC decoder recursively computes log-likelihood ratios (LLRs) at each stage i (0 ≤ i < N)
using the received vector yN−1

0 and previously decoded bits ûi−1
0 . However, for finite block lengths,

SC decoding is susceptible to error propagation because of its sequential nature. To overcome this
limitation, successive cancellation list (SCL) decoding [35] maintains up to L candidate paths ui

0 at
each decoding step i, where each path represents a valid prefix of the input sequence. By preserving
multiple candidates, SCL decoding significantly improves error-correction performance compared to
standard SC decoding. The decoding process can be viewed as a binary tree traversal of valid paths.
An example of such a tree for a (8, 4) code, constructed using the Reed–Muller (RM) code design [20],
is given in Figure 3.8.

3.3.3 Difference to True Path Metric

SCL decoding approaches ML performance when the list size L is sufficiently large to ensure that the
correct codeword remains among the list of candidates throughout the decoding process. The true
path is dropped only when its path metric becomes worse than those of at least L other candidate
paths. The Difference to True Path Metric (DTPM) introduced in [36] enables to evaluate this case.
For a candidate path ui

0, and under the assumption that the all-zero codeword 0N−1
0 is transmitted,

the DTPM is defined as:

ψi(ui
0) = mi(ui

0)−mi(0i
0), (3.7)

where 0i
0 denotes the all-zero prefix and mi(ui

0) is the path metric for the candidate path ui
0. This

metric simplifies to an Euclidean distance analysis by considering the coset characterization of PAC
codes. A coset CN (ui

0) represents the set of all codewords generated by the prefix ui
0:

CN (ui
0) =

{
c = [ui

0,uN−1
i+1 ]GP AC | uN−1

i+1 ∈ FN−1−i
2

}
. (3.8)
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Assuming that the closest codeword to yN−1
0 within a coset CN (ui

0) is a minimum-weight codeword,
the DTPM from (3.7) can be expressed as:

ψi(ui
0) = min

c∈C∗

2
σ2

N−1∑
j=0

yjcj , (3.9)

where σ2 is the noise variance and

C∗ =
{

c ∈ CN (ui
0) | w∗ = w(c) = w∗(CN (ui

0))
}
, (3.10)

with w∗(CN (ui
0)) denotes the Hamming minimum-weight of the coset. An efficient algorithm for

computing minimum weights of polar code cosets was introduced in [37] and was later generalized to
PAC codes in [38].

Accordingly, the DTPM is the minimum of A∗ correlated gaussian random variables:

ψi(ui
0) ∼ min {X0, . . . , XA∗−1} , (3.11)

where Xk ∼ N
(

2w∗

σ2 ,
4w∗

σ2

)
and A∗ is the number of minimum-weight codewords within C∗.

To ensure the correct codeword prefix at stage i remains in the list, all paths ui
0 with a negative

DTPM must be retained. Consequently, the average list size Li at stage i has to satisfy:

Li ≥
∑

ui
0∈Ui

E

(
1

(
ψi(ui

0) ≤ 0
))

=
∑

ui
0∈Ui

P
(
ψi(ui

0) ≤ 0
)
, (3.12)

where Ui is the set of all valid prefixes at stage i and 1 is the indicator function. Empirically, it has
been demonstrated that for moderate to long codes, restricting computations to cosets with minimum
weights not exceeding — or are slightly greater than — the code’s minimum distance dmin provides
reliable estimates of the average list size.

In summary, the list size (L = maxi Li) required to achieve ML performance is fully characterized
by the Cumulative Distribution Function (CDF) of the DTPM of candidate prefixes ui

0 at each de-
coding stage. This CDF depends solely in the minimum-weight properties of the coset CN (ui

0) and
the correlation factor ρ among its minimum-weight codewords. These properties could be efficiently
computed thanks to the algorithms presented in [37] and [38] as explained in [36]. Building upon
this work, we propose a code construction algorithm for PAC codes that simultaneously guarantees
near-ML performance under low-complexity SCL decoding and good error-correction performance.

3.3.4 Polar code construction under SCL List size constraint

This section details the proposed algorithm for designing PAC codes that achieve ML performance
under low-complexity SCL decoding. As the main objective of this method is to handle the trade-
off between error-correction performance and decoding complexity, the algorithm selects codes that
simultaneously satisfy two key constraints. First, a target minimum distance dtarget to ensure strong
error-correction capability. Second, a target list size Ltarget to guarantee near-ML performance with
moderate decoding complexity.

Description of the proposed algorithm

Given code parameters such as the block length N , the code rate R = K
N and the convolutional

generator polynomial g, the algorithm outputs frozen sequences that meet the specified constraints
Ltarget and dtarget .

The construction begins by freezing all bit positions corresponding to rows in the PAC generator
matrix GPAC with an Hamming weight less than dtarget. This initial step immediately eliminates a
subset of frozen sequences that fail to meet the minimum distance constraint. As a result, the search
space is significantly reduced.
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The algorithm fundamentally relies on the binary decoding tree traversal, starting from the first
unfrozen bit position j. For subsequent stages i ≥ j, the algorithm enumerates all valid candidate
paths ui

0 corresponding to up to 2i−j+1 possible frozen sequences fjfj+1 . . . fi ∈ {0, 1}i−j+1. In these
sequences, fk = 1 indicates frozen bit position and fk = 0 indicates information bit position. For each
candidate frozen sequence f i

j = fjfj+1 . . . fi at the ith stage, the average list size L
f i
j

i is computed using
Equation (3.13).

L
f i
j

i =
∑

ui
0∈Ufi

j

P
(
ψ(ui

0) ≤ 0
)
, (3.13)

where Uf i
j

=
{
ui

0 | w∗(CN (ui
0)) ≤ dtarget, uk ∈ F2−fk

}
, with F1 = {0} and F2 = {0, 1}.

To illustrate this principle, assuming no coset pruning is applied, paths in Uf6
3

= U0011 are given
in Figure 3.8. It should be noted that pruning strategies are detailed in Sub-section 3.3.4.

To ensure the minimum distance constraint, we leverage the properties of coset minimum-weight
computation [37, 38]. At the last frozen stage, the minimum weight of a coset is lower bounded by
the code’s minimum distance, since the minimum weight among the remaining cosets at this stage
determines the overall minimum distance of the code. Therefore, once the traversal reaches stages
i ≥ N −K, the minimum distance d

f i
j

min of frozen patterns f i
j with exactly N −K frozen positions is

computed from the set of valid paths Uf i
j

. If d
f i
j

min ≥ dtarget, the sequence is returned; otherwise it is
discarded.

Pruning strategies

The exhaustive evaluation of all possible frozen patterns becomes computationally high in later stages
as the number of frozen sequences grows exponentially. In order to keep the computational complexity
reasonable, the algorithm employs pruning strategies at two levels.

A candidate frozen sequence is immediately discarded if it violates any of the following constraints:

• Rate constraint: the number of information bits or frozen bits is inconsistent with the code rate:∑i
k=j fk > N −K − j or

∑i
k=j(1− fk) > K

• List size constraint: the average list size at stage i exceeds the target: L
f i
j

i > Ltarget

Additional constraints on the frozen patterns structure can be applied to remove potentially ir-
relevant ones. For instance, a constraint may require that, within a specific range of bit positions, a
minimum number of information bits must be inserted by a certain decoding stage. Moreover, the last
frozen bit position lf may be predefined. This implies that all subsequent bits must be information
bits. If the number of sequences exceeds a maximum value Smax, only the first Smax sequences are
kept.

Pruning is applied at the level of path prefixes. A path ui
0 is pruned if the minimum Hamming

weight of its associated coset CN (ui
0) exceeds dtarget. Those cosets are irrelevant for both the list size

computation in equation (3.13) and the overall code minimum distance computation. Moreover, only
paths in the sets Uf i

j
of the retained sequences f i

j are considered. In the last stages, the average list
size is generally lower than the global list size needed to achieve ML performance. Consequently, it
is possible to only consider cosets whose weights are less than the target minimum distance dtarget in
those stages. This simplification is valid because the algorithm’s objective is to evaluate the code’s
minimum distance. Actually, the number of minimum-weight codewords is not taken into account.

The complete proposed algorithm is formalized in Algorithm 3.3.4.
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Table 3.3: The distance properties and average SCL list sizes of the retained codes
K Frozen Sequence g dmin Admin L

24
Code24,1 g1 32 1516 16

g2 32 264 16
Code24,2 g1 32 1836 11

g2 32 396 10
5G−WD24 g2 32 176 110

5G g2 16 8 8

64
Code64,1 g2 12 596 19
Code64,2 g2 12 608 28

5G−WD64 g2 16 2529 [27] 142
5G g2 8 256 23
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3.3.5 Simulation results

This section provides the simulation results for PAC codes with parameters (128, 24) and (128, 64),
using convolutional transformations g1 = (1, 0, 1) and g2 = (1, 0, 1, 1, 0, 1, 1). A target FER of 10−3 is
the common point for comparing the resulting code designs .

For the (128, 24) code, Algorithm 3.3.4 was employed to identify many frozen sequences satisfying
the constraints of a target minimum distance dtarget = 32 and a maximum list size Ltarget = 16.
Two promising codes, designated as Code24,1 and Code24,2, were selected for further comparison. The
average list sizes Li required at each decoding stage i for both codes and convolutional transformations
are plotted in Figure 3.9. For Code24,1, a list size of L = 16 is sufficient to achieve its ML performance,
with both g1 and g2. On the other hand, Code24,2 demonstrates lower decoding complexity, requiring
only L = 11 with g1 and L = 10 with g2 to reach its ML performance. These results are summarized
in Table 3.3 along with the distance properties of both codes. The performance of Code24,1 under SCL
decoding is given in Figure 3.10. As expected from the list size analysis, the FER curves for L = 16
and L = 32 are almost identical, confirming that L = 16 is sufficient to achieve ML performance.
Although the 5G-WD24 code [27] has better distance properties and therefore, potentially enhanced
error-correction performance, it requires a much larger average list size of about L = 110 to achieve its
ML performance. This is significantly higher than the optimal list size of both Code24,1 and Code24,2.
On the other hand, the performance of 5G-WD24 with lower list sizes is worse than that of Code24,1.
Actually, its performance with L = 32 is matched by Code24,1 with only L = 8, and its performance
with L = 64 is surpassed by Code24,1 with L = 16 using the same convolutional transformation g2.
The 5G code performance is given for purposes of comparison. It demonstrates significantly worse ML
performance than the proposed codes, which is attributed to its poor distance properties. While The
5G code achieves its ML performance with a small list size (L = 8), it is still outperformed by all other
designs with this same decoding complexity. A direct comparison between Code24,1 and Code24,2 is
illustrated in Figure 3.11. With a list size of L = 8, Code24,2 not only outperforms Code24,1 decoded
with the same list size, but also nearly matches its performance with L = 16. This observation applies
to both convolutional transformations g1 and g2.

For a code rate R = 1
2 , the algorithm parameters were set to dtarget = 16 and Ltarget = 32. Only

the transformation g2 was studied, since the PAC matrix of g1 suggests that only a RM code design
provides a code minimum distance of 16. At this list size threshold, no codes with dmin = 16 were
found. But, codes with dmin = 12 were retained. Two resulting codes, referred to as Code64,1 and
Code64,2 are compared to the RM code design which matches the code 5G − WD64 of [27]. The
average list sizes of both codes over the decoding stages are given in Figure 3.12. Code64,1 needs a
SCL list size of L = 19 to approach its ML performance while Code64,2 demonstrates a slightly higher
decoding complexity. A comparison of Code64,1 and Code64,2 with different SCL list sizes is presented
in Figure 3.13. A list size of L = 16 for Code64,1 achieves the same error rate performance as Code64,2
with L = 28. 5G-WD64 code has better distance properties and potentially better error-correction
performance if a large list size of about L = 144 is considered. However, its performance falls below
Code64,1 and Code64,2 at lower list sizes as shown in Figure 3.14. Code64,1 surpasses the performance
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Figure 3.9: The average list sizes throughout the decoding stages for the proposed codes Code24,1 and
Code24,2

of 5G-WD64 with L = 8 and matches its performance with L = 32 while requiring only a list size of
L = 16. The performance of the 5G code, decoded with a list size of L = 32, is included for reference.
As expected from its distance properties, its performance is comparable to that of the other codes
achieved with a much smaller list size.
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Figure 3.10: Error rate performance of Code24,1

Figure 3.11: Error rate performance comparison between Code24,1 and Code24,2
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Figure 3.12: The average list sizes throughout the decoding stages for the proposed codes Code64,1
and Code64,2 with the convolutional transformation g2

Figure 3.13: Error rate performance comparison between Code64,1 and Code64,2 with the convolutional
transformation g2
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Figure 3.14: Error rate performance of Code64,1
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3.3.6 Summary

This section has introduced a new method for designing PAC codes that effectively balances the trade-
off between decoding complexity and error-correction performance. The proposed approach, which
optimizes the frozen sequence based on the minimum distance and list size constraints, successfully
identifies configurations that achieve near-ML performance with significantly reduced SCL list size and
consequently moderate decoding computational complexity. Results demonstrate that the generated
codes approach the performance of other configurations with a list size half as large. This can be very
useful for low-latency applications, where a balance between decoding complexity and error-correction
capability has to be considered during code construction.

Conclusion
In conclusion, the general objective of this research was to improve polar code constructions specifically
tailored for a (low-complexity) SCL decoder. Our first approach built upon the work done in [25],
which involved training first a neural network to predict the Frame Error Rate (FER) for a given
polar code construction, e.g. polar codes constructed from a gaussian approximation or RM polar
sub-codes. Once trained, this network is used to generate better constructions by means of the PGD
method. The resulting constructions were found to outperform the constructions of both datasets -
both the original dataset utilized in [25] and the RM subcode dataset [24] - in the high SNR region.
Although the margin of improvement remains modest, our research contributes to the ongoing efforts
in advancing polar code constructions for SCL decoders by shedding light on the potential of combining
neural network predictions with iterative refinement techniques like the PGD. It also highlights the
importance of choosing well the database used to train the NN in charge of performance prediction.
Our second contribution targeted the more powerful PAC codes. We have developed a novel method
for designing polar codes under SCL decoding, ensuring near-ML error-correction performance with
moderate list sizes (half-the-size of the usual standard decoder). The approach explicitly addresses
the trade-off between error-correction performance and decoding complexity by jointly optimizing
code distance properties and list size constraints. A promising avenue for future work is to investigate
whether integrating machine learning into this method could further reduce the required list size while
maintaining constant error-correction performance.
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4 Conclusions and Perspectives

This deliverable aimed to summarize the investigations carried out within WP2 during the project.
The goal of WP2 was to investigate how learning techniques can help come up with new codes or new
design methods in communication scenarios for which existing methods fall short of the theoretical
forecasts.

Two contributions have focused on revisiting existing design paradigms to arrive at better codes.
In the first one, multi-agent deep reinforcement learning has been applied to the problem of optimizing
the mapping between code symbols from a powerful non-binary turbo-code and modulated symbols
from a high-order constellation. The result is a learned non-uniform constellation and a learned non-
linear transformation that each improve the error-floor performance by one or two decades, compared
to previous coded modulation designs based on expert rules. The second contribution leverages on
supervised learning in an original manner, in order to revisit conventional Polar code design and arrive
at improved performance under successive-cancellation list (SC) decoding. The learned polar codes are
able to match and even slightly outperform the best existing construction, which is quite promising.
However the performance of this approach was found to be highly dependent on the code database
used for training. We have also introduced a new (expert) method for designing Polarization-Adjusted
Convolutional (PAC) codes that effectively balances the trade-off between complexity (list size) and
error-correction performance under SCL decoding.

Another line of work in WP2 aimed at using ML to learn new families of codes or communication
waveforms. The third contribution fits within this framework. Here ML was used to search for a
particular form of spread-spectrum sequences with good correlation properties, especially when trun-
cated. Analysis of the learned outcomes gradually unveiled mathematical structure in the solutions,
which eventually led to a deterministic, mathematical construction of optimal sequences. We fore-
see promising applications for these C4-sequences that have been patented, particularly for massive
Internet-of-Thing (IoT) and non-terrestrial network (NTN) communications systems.

Page 32 of (35) ©AI4CODE, October 2025



D2.2: Learning-based code and coded modulation design methods

Bibliography

[1] D. Chu, “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Transac-
tions on Information Theory, vol. 18, no. 4, pp. 531–532, 1972.

[2] R. Frank, S. Zadoff, and R. Heimiller, “Phase shift pulse codes with good periodic correlation
properties (corresp.),” IRE Transactions on Information Theory, vol. 8, no. 6, pp. 381–382, 1962.

[3] C. Marchand and E. Boutillon, “Rate-adaptive inner code for non-binary decoders,” in 2021 11th
International Symposium on Topics in Coding (ISTC), 2021, pp. 1–5.

[4] ——, “Rate-adaptive cyclic complex spreading sequence for non-binary decoders,” in Interna-
tional Symposium on Topics in Coding (ISTC’2023), Brest, 2023.

[5] E. Boutillon, “C4-sequences: Rate adaptive coded modulation for few bits message,” in Interna-
tional Symposium on Topics in Coding (ISTC’2023), Brest, 2023.

[6] AI4CODE Project (ANR-21-CE25-0006), “Specification of the code design problems,” Deliverable
D2.1, Apr. 2023.

[7] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah, “Design of Low-Complexity Convolutional
Codes over GF(q),” in IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, UAE, Dec
2018.

[8] R. Klaimi, S. Weithoffer, and C. Abdel Nour, “Improved non-uniform constellations for non-binary
codes through deep reinforcement learning,” in IEEE 23rd Int. Workshop on Signal Process.
Advances in Wireless Commun. (SPAWC), 2022, pp. 1–5.

[9] R. Klaimi, “Study of non-binary turbo codes for future communication and broadcasting systems,”
Theses, IMT Atlantique, Jul. 2019. [Online]. Available: https://theses.hal.science/tel-02543195

[10] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks for cooperative multi-
agent learning,” arXiv preprint arXiv:1706.05296, 2017.

[11] H. Dong, H. Dong, Z. Ding, S. Zhang, and Chang, Deep Reinforcement Learning. Springer, 2020.

[12] R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard, “Protograph-based interleavers for punc-
tured turbo codes,” IEEE Trans. Commun., vol. 66, no. 5, pp. 1833–1844, 2018.

[13] R. Garzón Bohórquez, R. Klaimi, C. Abdel Nour, and C. Douillard, “Mitigating correlation
problems in turbo decoders,” in 10th Intern. Symp. on Turbo Codes Iter. Inf. (ISTC), Hong
Kong, China, Dec. 2018.

[14] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for sym-
metric binary-input memoryless channels,” IEEE Transactions on Information Theory, vol. 55,
no. 7, pp. 3051–3073, 2009.

[15] Y. Liao, S. A. Hashemi, J. M. Cioffi, and A. Goldsmith, “Construction of polar codes with
reinforcement learning,” IEEE Transactions on Communications, vol. 70, no. 1, pp. 185–198,
2021.

[16] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions on Information Theory,
vol. 59, no. 10, pp. 6562–6582, 2013.

[17] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Genetic algorithm-based polar code
construction for the awgn channel,” in SCC 2019; 12th International ITG Conference on Systems,
Communications and Coding. VDE, 2019, pp. 1–6.

©AI4CODE, October 2025 Page 33 of (35)

https://theses.hal.science/tel-02543195


D2.2: Learning-based code and coded modulation design methods

[18] L. Huang, H. Zhang, R. Li, Y. Ge, and J. Wang, “Ai coding: Learning to construct error correction
codes,” IEEE Transactions on Communications, vol. 68, no. 1, pp. 26–39, 2019.

[19] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans. on Comm., vol. 60,
no. 11, pp. 3221–3227, 2012.

[20] B. Li, H. Shen, and D. Tse, “A rm-polar codes,” arXiv preprint arXiv:1407.5483, 2014.

[21] G. He, J.-C. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang, Y. Ge, R. Zhang et al.,
“Beta-expansion: A theoretical framework for fast and recursive construction of polar codes,” in
GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE, 2017, pp. 1–6.

[22] L. Huang, H. Zhang, R. Li, Y. Ge, and J. Wang, “Reinforcement learning for nested polar code
construction,” in 2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2019,
pp. 1–6.

[23] M. Léonardon and V. Gripon, “Using deep neural networks to predict and improve the perfor-
mance of polar codes,” in 2021 11th International Symposium on Topics in Coding (ISTC), 2021,
pp. 1–5.

[24] V. Miloslavskaya, Y. Li, and B. Vucetic, “Design of compactly specified polar codes with dy-
namic frozen bits based on reinforcement learning,” 2022, submitted to IEEE Transactions on
Communications.

[25] M. Léonardon and V. Gripon, “Using deep neural networks to predict and improve the perfor-
mance of polar codes,” in 2021 11th International Symposium on Topics in Coding (ISTC), 2021,
pp. 1–5.

[26] M. Rowshan, S. H. Dau, and E. Viterbo, “On the formation of min-weight codewords of polar/pac
codes and its applications,” IEEE Transactions on Information Theory, vol. 69, no. 12, pp. 7627–
7649, 2023.

[27] M. Rowshan and V.-F. Dragoi, “Towards weight distribution-aware polar codes,” arXiv preprint
arXiv:2506.15467, 2025.

[28] M. Moradi and D. G. Mitchell, “Pac code rate-profile design using search-constrained optimization
algorithms,” in 2024 IEEE International Symposium on Information Theory (ISIT). IEEE, 2024,
pp. 2204–2209.

[29] M. Moradi and A. Mozammel, “A monte-carlo based construction of polarization-adjusted con-
volutional (pac) codes,” Physical Communication, vol. 68, p. 102578, 2025.

[30] X. Gu, M. Rowshan, and J. Yuan, “Pac codes meet crc-polar codes,” arXiv preprint
arXiv:2501.18080, 2025.

[31] W. Liu, L. Chen, and X. Liu, “A weighted sum based construction of pac codes,” IEEE Commu-
nications Letters, vol. 27, no. 1, pp. 28–31, 2022.

[32] E. Arıkan, “From sequential decoding to channel polarization and back again,” arXiv preprint
arXiv:1908.09594, 2019.

[33] B. Li, H. Zhang, and J. Gu, “On pre-transformed polar codes,” arXiv preprint arXiv:1912.06359,
2019.

[34] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for sym-
metric binary-input memoryless channels,” IEEE Transactions on information Theory, vol. 55,
no. 7, pp. 3051–3073, 2009.

Page 34 of (35) ©AI4CODE, October 2025



D2.2: Learning-based code and coded modulation design methods

[35] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “Llr-based successive cancellation list
decoding of polar codes,” IEEE transactions on signal processing, vol. 63, no. 19, pp. 5165–5179,
2015.

[36] M. Ellouze, “Distance properties of polar codes: theory and applications,” Ph.D. dissertation,
Université de Bordeaux, 2024.

[37] H. Yao, A. Fazeli, and A. Vardy, “A deterministic algorithm for computing the weight distribution
of polar code,” IEEE Transactions on Information Theory, 2023.

[38] M. Ellouze, R. Tajan, C. Leroux, C. Jégo, and C. Poulliat, “Low-complexity algorithm for the
minimum distance properties of pac codes,” in 2023 12th International Symposium on Topics in
Coding (ISTC). IEEE, 2023, pp. 1–5.

©AI4CODE, October 2025 Page 35 of (35)


	Introduction
	Learning to design sequences with good correlation properties (and rediscovering string art)
	The problem of optimizing CCSK sequences
	Machine learning techniques
	Definition of C4-sequences
	Potential applications of C4-sequences

	A reinforcement learning approach to joint code and modulation design
	Target code design problem and learning approach
	Learning results
	Joint optimization of non-uniform constellation and code
	Optimization of the Symbol transformation

	Conclusion

	Polar Code design tailored to SCL decoding
	Introduction
	Deep Neural Network (DNN) to predict polar code performance
	A Multilayer Perceptron (MLP) network
	Network training and testing
	Projected Gradient Descent (PGD) method
	Results

	Enhance the DNN newfound sequences
	The training dataset
	Network training and testing
	PGD method and results

	Near-ML PAC Codes: Efficient Design with Controlled SCL Decoding Complexity
	Polarization-Adjusted Convolutional (PAC)
	Successive Cancellation (SC) decoding
	Difference to True Path Metric
	Polar code construction under SCL List size constraint
	Simulation results
	Summary

	Conclusion

	Conclusions and Perspectives
	Bibliography

