
ANR, Appel à Projets Générique (AAPG 2021)

AI4CODE Project (ANR-21-CE25-0006)

Deliverable D3.2

Improved Learning-Based Decoders
Final Report

Editor: Valentin Savin (CEA)

Deliverable nature: Public

Due date: October 31, 2025

Delivery date: October 22, 2025

Version: 1.0

Total number of pages: 104 pages

Keywords: LDPC codes, syndrome-based neural decoding, belief-
propagation, multiple-round belief-propagation, ordered statistics
decoding.

Abstract

This deliverable reports on the improved learning-based decoders obtained from the design space
exploration analysis in D3.1, the performance and complexity assessment of these decoders, and the
analysis of the learning outputs. It encompasses the work carried out in Task 3.2 and Task 3.3, during
the full course of the project.

D3.2: Improved Learning-Based Decoders (Final)

List of Authors

Partner Author

LAB-STICC/IMTA Raphaël Le Bidan (raphael.lebidan@imt-atlantique.fr)

Ahmad Ismail (ahmad.ismail@imt-atlantique.fr)

Elsa Dupraz (elsa.dupraz@imt-atlantique.fr)

Charbel Abdel Nour (charbel.abdelnour@imt-atlantique.fr)

CEA-LETI Valentin Savin (valetin.savin@cea.fr)

Valérien Mannoni (valerien.mannoni@cea.fr)

Joachim Rosseel (joachim.rosseel@cea.fr)

IRIT/INP-ENSEEIHT Charly Poulliat (charly.poulliat@enseeiht.fr)

ETIS/CYU Inbar Fijalkow (inbar.fijalkow@ensea.fr)

Page 2 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Contents

Introduction 5

1 Syndrome-Based Neural Decoding of Linear Codes 7
1.1 Motivation . 7
1.2 Soft-decision decoding of linear block codes . 8

1.2.1 Transmission System Model . 8
1.2.2 The Optimal Decoder . 8
1.2.3 Complexity of MLD . 10

1.3 Principle of syndrome-based neural decoding . 10
1.3.1 Principle . 11
1.3.2 Training Method . 11

1.4 DNN architectures for SBND . 12
1.4.1 Multi-layer Perceptron (MLP) . 12
1.4.2 Recurrent Neural Network (RNN) . 12
1.4.3 Transformer . 13

1.5 Performance analysis of syndrome-based neural decoders 14
1.5.1 Implementation Setup . 14
1.5.2 Performance Results . 16
1.5.3 SBND limitations . 17
1.5.4 Summary . 18

1.6 Improving training of SBND Models . 18
1.6.1 Training for MLD . 19
1.6.2 Training with fixed datasets . 20
1.6.3 Optimizing the training distribution . 23
1.6.4 Taking advantage of data augmentation . 25
1.6.5 Reflection on the proposed heuristics to improve the training of SBND 27

1.7 Improving SBND performance at inference time . 28
1.7.1 Iterative Correction . 28
1.7.2 Test-time Augmentation (TTA) . 31
1.7.3 Reflection on the inference time SBND enhancement techniques 33

1.8 Conclusion . 35

2 Learning to Improve BP Decoding of Short LDPC Codes 38
2.1 Motivation . 38
2.2 Multi-Round Belief Propagation decoding . 40

2.2.1 General framework . 40
2.2.2 How to select the bits to perturb . 44
2.2.3 How to perturb the input . 47
2.2.4 Performance vs complexity . 49

2.3 Beyond MRBP: Learned MRBP . 52
2.3.1 Learning a better VN selection rule by combining metrics 53
2.3.2 Learning the perturbation patterns with an MLP 55

2.4 Deep learned MRBP . 61
2.4.1 Leveraging SBND to improve MRBP . 61
2.4.2 Performance of the proposed deep learned MRBP decoder 62

2.5 Conclusion . 68

©AI4CODE, October 2025 Page 3 of (104)

D3.2: Improved Learning-Based Decoders (Final)

3 Improving Neural BP Decoders via Diversity and Post-Processing 71
3.1 Motivation . 71
3.2 BP-RNN Diversity from Absorbing Sets Classification: Training, Selection, and Decod-

ing Architectures . 73
3.2.1 Absorbing sets: search algorithm and classification 73
3.2.2 Specialization of BP-RNN decoding . 74
3.2.3 BP-RNN diversity selection . 75
3.2.4 BP-RNN diversity decoding architectures . 76
3.2.5 Numerical results . 77
3.2.6 Discussion . 81

3.3 BP-RNN Diversity with OSD Post-Processing . 81
3.3.1 OSD decoding . 81
3.3.2 OSD as a post-porcessing step . 82
3.3.3 Numerical results . 82
3.3.4 Discussion . 84

3.4 Improving OSD Post-Processing for BP Decoding . 84
3.4.1 Accumulated and optimized LLR for OSD post-processing 84
3.4.2 Selecting sets of LLRs . 85
3.4.3 Complexity reduction . 86
3.4.4 Numerical results . 86
3.4.5 Discussion . 88

4 Learned message passing receivers for multi-user MIMO communications 90
4.1 Motivation . 90
4.2 Leveraging learning to balance extrinsic vs APP information feedback in Turbo VEP

MU-MIMO receivers . 91
4.2.1 Deep Unfolding with Learnable Scaling Factors 91
4.2.2 Modified Gated Recurrent Unit Architecture 91
4.2.3 Performance comparison . 92

4.3 Message-passing Graph Neural Networks for graph-based wireless communications . . 92
4.3.1 GEPnet: Bipartite Graph Approach . 93
4.3.2 FGNN: Factor Graph Neural Network . 94
4.3.3 Performance comparison . 94

5 General Conclusion 96

Bibliography 99

Page 4 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Introduction

Context of this work

The aim of the AI4CODE project is to explore and assess how machine learning (ML) techniques can
contribute to improvements in coding theory, techniques, and practice. The focus is placed on forward
error correction (FEC), and the project is built around the following four inter-related objectives,
identified and detailed in the scientific document of the project:

Objective #1: Explore how ML can contribute to improving the state of the art (SoA) in FEC
decoding.

Objective #2: Investigate how ML techniques can improve current knowledge and practice in FEC
code design.

Objective #3: Learn from the machine.

Objective #4: Develop a general expertise and critical thinking on ML algorithms and their appli-
cations to coding theory and practice.

Work Package 3 (WP3) focuses on ML-augmented FEC decoding techniques, thus addressing
the first of the above objectives. Leveraging ML tools and algorithms to improve the SoA in FEC
decoding has been gaining increasing attention in the last few years. A first major issue that has
been identified is to improve the performance of message-passing (MP) decoding at short to moderate
block length, with the ultimate purpose of closely approaching maximum-likelihood decoding (MLD)
at reasonable cost. ML is also regarded as a promising approach to reduce the complexity of certain
decoding algorithms, for example to alleviate the burden of message computation in non-binary LDPC
decoders, or to accelerate successive-cancelation list-decoding of Polar codes by better predicting the
optimal path and pruning unlikely candidates earlier. Finally, learning may also help design decoders
that adapt automatically, online, to unknown or rapidly-varying channel parameters. Encouraging
results have been reported in the literature, although a significant gap to MLD performance, at
practical cost, still remains.

The Gantt chart of WP3 is represented in Fig. 1. This deliverable reports on the activities carried
out within the Task 3.2 and Task 3.3, during the project. These activities focused on improved
learning-based decoders obtained from the design space exploration analysis in D3.1, the performance
and complexity assessment of these decoders, and the analysis of the learning outputs.

Figure 1: Gantt diagram of WP3

Organization of the deliverable

The field of learning-based channel decoding, or, more compactly, neural decoding, is shaped by two
main paradigms: model-free and model-based approaches. Model-free decoders treat decoding as a
pure learning task, allowing the use of diverse neural network architectures and enabling code-agnostic
solutions. However, they often struggle with scalability and generalization. In contrast, model-based

©AI4CODE, October 2025 Page 5 of (104)

D3.2: Improved Learning-Based Decoders (Final)

decoders embed structural knowledge, such as graphical code constraints or traditional decoding rules,
into the learning process, which can improve interpretability and guide learning, but at the cost of
reduced flexibility in model design. No clear winner between the two approaches has emerged yet
when it comes to closely approach MLD. The deliverable is organized in four sections that revolve
around those two approaches.

Section 1 focuses on model-free neural decoding, and addresses the long-standing problem of devis-
ing computationally-efficient soft-decision decoding algorithms for arbitrary linear block codes. Here,
the goal is to approximate MLD as closely as possible without prior inductive bias on the code.
A particular emphasis is placed on syndrome-based neural decoding (SBND). We first describe the
principle, implementation, and limitations of existing SBND models. We then propose heuristics for
constructing carefully designed fixed datasets to improve the training of SBND models and examines
complementary methods to further enhance their performance at inference time.

The next two sections shift the focus to model-based decoders. Both are devoted to the challenging
problem of devising practical decoding algorithms for short LDPC codes that could match, or at least
closely approach, the performance of MLD. Progress on this issue could bring more than 1 dB gain
for many of the FEC codes found in the short-packet communication systems at the heart of the
Internet-of-Things, making this problem of not only of theoretical but also of great practical value.

Section 2 investigates an LDPC decoding technique in which some perturbation is applied to
the input of the Belief-Propagation (BP) decoder whenever it fails, in an attempt to correct some
of the channel errors. BP decoding is then restarted for another round. The overall process is
repeated several times until a codeword is found or a maximum number of perturbations has been
tested. We review various decoders of this kind from the literature, and note that they can practically
approach the performance of MLD, but that this requires processing an unreasonably large number
of perturbation patterns. We provide experimental evidence suggesting that, with a proper choice of
input perturbations, it might be possible to approach MLD in a much more computationally-efficient
manner. This lead us to consider and evaluate different ways of drawing, first, on machine learning,
then, on deep learning, to eventually arrive at smarter learned decoders which need less perturbation
patterns to reach the same performance than the best-known expert decoders.

Section 3 focuses on improving the decoding performance of short LDPC codes, by leveraging on
and combining several techniques, such as neural belief-propagation, decoding diversity, and post-
processing. We observe that decoding approaches based solely on neural BP lead to an increase in the
decoding speed, rather than an intrinsic improvement of the error correction capability. To improve
the error correction performance, we complement neural-BP or conventional BP decoding with a post-
processing step, based on ordered statistics decoding (OSD). This leads us to consider new approaches
to neural model based optimization, where the aim is not to deliver the best possible decoding perfor-
mance, but merely an output that best suits the post-processing step. Overall, the proposed approach,
combining neural BP and low-order OSD, allows approaching or covering a significant part of the gap
to MLD.

Finally, Section 4 takes a detour with the initial focus of WP3 in exploring the use of deep learning
techniques to multi-user detection in multi-antenna systems by means of message-passing algorithms
based on variational inference. First, we unfold the iterations in the turbo-receiver to optimize certain
scalar parameters that do not have an analytic expression. Second, we study the application of
neural networks to the graphs induced by the communication models. The results obtained with both
approaches demonstrate that introducing learning in various places of the turbo-receivers can result
in complexity savings without compromising the performance.

Page 6 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

1 Syndrome-Based Neural Decoding of Linear Codes

1.1 Motivation

Model-free neural decoders rely on neural network (NN) architectures that do not incorporate any
explicit information about the underlying code structure. Instead, they learn to directly map the noisy
observations received from the channel back to the original transmitted codewords. This approach
treats decoding purely as a data-driven inference problem, leveraging the flexibility and expressive
power of modern NNs. Since no algebraic properties or decoding rules of the code are encoded into
the architecture or learning procedure, model-free decoders are considered code-agnostic and can, in
principle, be applied to any block code. Ideally, the NN architectures employed should be trained on
the full set of codewords. This leads to the curse of dimensionality due to the exponential growth of the
size of the codebook with the code’s dimension. Nevertheless, model-free decoders have demonstrated
high potential in achieving near-optimal decoding performance for short block codes.

Syndrome-Based Neural Decoding (SBND) [1] is a prominent example of model-free decoding for
general linear block codes. SBND aims to estimate the channel-induced error pattern, using both the
syndrome and channel reliability information as inputs to the NN. A key advantage of this formulation
is that it allows the generation of training data from noisy realizations of a single codeword, without
loss of generality. Another strength of SBND lies in its architectural flexibility as the model can be
instantiated using a variety of NN architectures. The literature spans a range of such architectures,
from simple multilayer perceptrons (MLPs) to more advanced recurrent neural networks (RNNs), and
more recently, transformer-based models like ECCT [2].

In this first contribution to WP3, we start by introducing the general soft-decision decoding prob-
lem. Then we describe the SBND framework and training procedure. We review the main deep neural
network (DNN) architectures proposed in the literature, and analyze their decoding performance on
selected codes, with a particular focus on how closely they can approach MLD. We show that while
SBND has close to optimal BER performance, a noticeable performance gap remains in FER, even af-
ter large-scale training. This leads us to develop two contributions aimed at reducing the gap to MLD.
First, we shift the focus from purely architectural improvements, which garnered the most attention
in the literature on SBND so far, to the often-overlooked role of training data. We propose a set of
data-centric heuristics designed to enhance the training performance and generalization capabilities of
SBND models while reducing the overall data requirements. These heuristics are architecture-agnostic
and draw inspiration from best practices in both deep learning and channel coding, enabling more
efficient and effective model training. Second, we introduce inference-time enhancement techniques
that can be applied to already trained SBND models to push their performance closer to MLD with-
out incurring additional training costs. These methods again leverage complementary ideas from deep
learning and coding theory and provide means of closing the FER gap to MLD.

Related publications. The above contributions have been published in:

[ILDA25a] A. Ismail, R. Le Bidan, E. Dupraz, and C. Abdel Nour, “Doing More With Less: To-
wards More Data-Efficient Syndrome-Based Neural Decoders” in Proc. of IEEE International
Conference on Machine Learning for Communications and Networking (ICMLCN), Barcelona,
Spain, May 2025.

[LIDA25b] R. Le Bidan, A. Ismail, E. Dupraz, and C. Abdel Nour, “Apport de l’augmentation de
données au décodage neuronal souple par syndrome des codes correcteurs d’erreurs” in Proc. of
30ème édition du colloque GRETSI, Strasbourg, France, Aug. 2025.

We provide an extended summary of the above contributions in the next sections. For more details
we refer to the above publications, as well as to the PhD manuscript of Ahmad Ismail.

©AI4CODE, October 2025 Page 7 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1.2 Soft-decision decoding of linear block codes
This section discusses soft-decision decoding for linear block codes. It introduces the transmission
channel model, presents the maximum likelihood decoding rule, and comment on its computational
challenges.

1.2.1 Transmission System Model

ENC BPSK LLR DEC

Figure 1.1: The BI-AWGN transmission system model.

A typical communication model is depicted in Fig. 1.1. Assume we have a binary linear code
C(n, k) with an associated parity-check matrix H. A binary information vector is encoded into a
codeword c ∈ C, which is then mapped onto a BPSK constellation: the i-th bit ci is modulated
to xi ∈ {+1,−1} according to the rule xi = (−1)ci , for i = 1, . . . , n. The modulated signal
x = (x1, . . . , xn) is transmitted over an additive white Gaussian noise (AWGN) channel. The received
vector y = (y1, . . . , yn) is given by y = x + n, where n ∼ N (0, (N0/2)I) is a zero-mean Gaussian noise
vector with variance σ2 = N0

2 . At the receiver, the channel log-likelihood ratio (LLR) for the i-th bit
is defined as

Lch
i = log P (yi | ci = 0)

P (yi | ci = 1) = log P (yi | xi = +1)
P (yi | xi = −1) . (1.1)

Under the AWGN channel model, the conditional probability distribution function is Gaussian:

P (yi | xi = ±1) = 1√
2πσ2

exp
(

−(yi ∓ 1)2

2σ2

)
. (1.2)

Substituting into the LLR definition, we obtain:

Lch
i = log

exp
(
− (yi−1)2

2σ2

)
exp

(
− (yi+1)2

2σ2

) = (yi + 1)2 − (yi − 1)2

2σ2 = 2
σ2 yi (1.3)

The resulting LLR vector Lch = (Lch
1 , . . . , L

ch
n) serves as the soft input to the decoder, which aims to

infer the transmitted codeword ĉ.

1.2.2 The Optimal Decoder

The optimal design criterion for a decoder is to minimize the probability of decoding error. The error
probability is defined as the probability that the decoded codeword ĉ differs from the transmitted one
c, i.e.,

Pe = P (c ̸= ĉ) = P (x ̸= x̂). (1.4)

For a given received vector y, the conditional error probability is:

P (x̂ ̸= x | y) = 1 − P (x̂ = x | y). (1.5)

Thus, minimizing the probability of error is equivalent to selecting the codeword that maximizes the
a posteriori probability:

ĉ = arg max
c∈C

P (x | y). (1.6)

Page 8 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Applying Bayes’ theorem and since P (y) does not depend on c, the optimal decision rule becomes:

ĉ = arg max
c∈C

P (y | x)P (x). (1.7)

Assuming equiprobable codewords, P (x) is constant and can be ignored. Therefore, the maximum a
posteriori (MAP) rule in (1.6) can be replaced by the maximum likelihood (ML) rule:

ĉ = arg max
c∈C

P (y | x). (1.8)

Minimum-distance decoding Under the AWGN channel, using the conditional probability in
(1.2), the ML decision rule in (1.8) can be written as:

ĉ = arg max
c∈C

1
(2πσ2)n/2 exp

(
−∥y − x∥2

2σ2

)
. (1.9)

This is equivalent to minimizing the squared Euclidean distance:

ĉ = arg min
c∈C

∥y − x∥2 = arg min
c∈C

∥y − (−1)c∥2. (1.10)

The MLD rule can expressed in alternative forms, such as the correlation-based formulation or the
syndrome-based formulation.

Correlation decoding. The expression in (1.10) can be reformulated in terms of a correlation
metric [3]. Specifically, the decoder can select the codeword that maximizes the inner product:

ĉ = arg max
c∈C

⟨(−1)c,y⟩ = arg max
c∈C

n∑
i=1

(−1)ciyi. (1.11)

Since the log-likelihood ratio (LLR) for BPSK modulation under AWGN is proportional to the received
value (i.e., Lch

i = 2
σ2 yi), the MLD decision rule can equivalently be written in terms of LLRs:

ĉ = arg max
c∈C

n∑
i=1

(−1)ciLch
i . (1.12)

Syndrome decoding. Syndrome decoding reinterprets the decoding problem as coset decoding
using the syndrome. Let y = x + n be received vector with its hard-decision:

zi =
{

0 yi ≥ 0
1 yi < 0

. (1.13)

Assume that z = c + e. Then, e denotes the binary error pattern defined as:

ei =
{

1 zi ̸= ci

0 zi = ci

. (1.14)

The syndrome s of the received vector determines the syndrome of the error pattern e. Therefore, in
syndrome decoding the task becomes finding the most likely error pattern within the coset indexed
by s. As shown in [3], starting from the correlation metric,

ĉ = arg max
c∈C

n∑
i=1

xiL
ch
i , (1.15)

each term xiL
ch
i can be expressed as:

xiL
ch
i =

|Lch
i |, if xi = sgn(Lch

i),

−|Lch
i |, if xi ̸= sgn(Lch

i).

©AI4CODE, October 2025 Page 9 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Equivalently, using the binary error pattern, we can write:

xiL
ch
i = (1 − 2ei) |Lch

i |. (1.16)

Therefore, the correlation metric becomes:

n∑
i=1

xiL
ch
i =

n∑
i=1

(1 − 2ei)|Lch
i | =

n∑
i=1

|Lch
i | − 2

∑
i:ei=1

|Lch
i |. (1.17)

Since
∑n

i=1 |Lch
i | is independent of e, maximizing the correlation metric is equivalent to minimizing

the reliability weight of the error pattern
∑

i:ei=1 |Lch
i |. The most likely error pattern is therefore the

one that flips the least reliable bits, i.e., those with the smallest |Lch
i |, under the condition that the

resulting codeword ĉ = z − ê is a valid one which occurs only if ĉH⊤ = 0 ⇐⇒ s = zH⊤ = êH⊤.
Consequently, the ML decoding rule can be written as:

ê = arg min
e∈{0,1}n

eH⊤=s

∑
i:ei=1

|Lch
i |, (1.18)

The decoded codeword is then obtained by correcting z using the most likely error pattern ê as
ĉ = z − ê. Since arithmetic is performed over F2, this subtraction is equivalent to bitwise XOR:
ĉ = z ⊕ ê.

1.2.3 Complexity of MLD

Both the correlation-based and syndrome-based formulations involve searching over a space of size
2k. In the correlation-based formulation, the decoder must evaluate the correlation metric for all
2k possible codewords in the code C. In the syndrome-based formulation, there are 2n−k syndrome
cosets, each containing 2k vectors. Since the syndrome uniquely identifies a coset, decoding reduces
to searching within that coset. This means that the number of candidate error patterns to consider
for each syndrome is also 2k. Therefore, both the correlation-based and syndrome-based formulations
have exponential complexity as a function of the message length k.

Brute-force implementation of MLD becomes computationally infeasible as the dimension k of the
code increases. Ordered Statistics Decoding (OSD) [4] offers a practical alternative that significantly
reduces the decoding complexity while closely approaching MLD performance. Based on information
set decoding, OSD leverages soft reliability information from the channel to infer the most likely
transmitted codeword. However the worst case computational complexity of OSD is dominated by the
number of candidate error patterns to re-encode. While significantly lower than the full 2k codeword
search required by MLD, the total number of candidates still grows quickly with the code dimension
k and order p (maximum number of bit flips performed within the most reliable independent bits
in the received codeword). Therefore, in practice, small values of p are used to balance decoding
performance with computational cost. It is recommended that p should be set to ⌈dmin/4⌉, in order
to achieve near-MLD performance for short to moderate block length codes [4].

While MLD and OSD serve as performance benchmarks, their complexity makes them imprac-
tical for many real-world systems. This limitation has motivated the search for other decoding ap-
proaches, including model-free neural decoders. Among model-free neural decoders, SBND decoders
have demonstrated the best performance so far.

1.3 Principle of syndrome-based neural decoding

This section introduces the general framework of SBND, where a NN is trained as a noise estimation
function to infer the most likely error pattern affecting the transmitted codeword. We outline the
main training procedure, including the construction of input features, the definition of target labels,
and the choice of loss function.

Page 10 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

>
< 0

| . |

DNN
logit-to-prob

Figure 1.2: General architecture of a syndrome-based neural decoder.

1.3.1 Principle

Recall that the syndrome-based formulation of MLD (1.18) shows that the pair (|Lch|, s) provides
sufficient statistics to infer the most likely error pattern within the coset indexed by the syndrome s.
Building on this idea, and as illustrated in Fig. 1.2, SBND aims to estimate the most likely binary
error pattern ê in the coset corresponding to the hard decision z on the received word. This estimation
is carried out via a noise estimation function, typically modeled by a deep neural network (DNN).
Once the estimated bianry error pattern ê is obtained, an estimate of the transmitted codeword is
easily recovered by correcting z, i.e., ĉ = z − ê. In other words, the bits identified as erroneous by the
DNN are flipped to reconstruct the codeword estimate.

1.3.2 Training Method

As with other model-free neural decoders, SBND are typically trained in a supervised manner. This
involves constructing labeled training examples consisting of input-output pairs derived from simulated
transmissions over the channel. The input to the DNN model is a concatenation of two elements: the
absolute values of the channel LLRs, |Lch|, and the syndrome vector s = zH⊤, where z is the hard-
decision vector obtained from the received word and H is the parity-check matrix of the code.

The target label associated with each input is the binary true error pattern e = z − c, where c is
the transmitted codeword. Since we are dealing with linear codes and as stated before, it is sufficient
to assume the transmission of the all-zero codeword in order to generate the training data. Under
this assumption, the error pattern simplifies to e = z. Training data is obtained through Monte Carlo
simulation of the transmission model described in Section 1.2.1, where simulated transmissions of the
all-zero codeword are used to construct fresh input-output pairs.

In the literature, the training data is often generated on-demand. This refers to generating fresh
batches of noisy received words at every step of the training process, resulting in a dynamically evolving
dataset.

As for the training process, one can formulate the learning problem as a multiclass classification
problem where the goal of the model is to infer the most likely error pattern from the 2k candidate
error patterns that comprise the coset indexed by s. Therefore, the cross-entropy (CE) loss function
would appear to be the most appropriate criterion for training the DNN component. However, the
exponential nature of the number of classes makes this approach computationally intractable. To
overcome this challenge, the commonly adopted solution is to minimize the Binary Cross-Entropy
(BCE) loss instead.

In this setting, the model outputs raw logits denoted by ξ ∈ Rn, where each element corresponds to
the logit associated with a particular bit being in error. These logits are passed through a hyperbolic
tangent activation to produce values in the range (−1, 1). To interpret them as soft probabilities, we
apply the transformation:

ẽ = 1 − ξ

2 , (1.19)

where ẽi ∈ (0, 1) represents the predicted probability that bit i is erroneous. From that the estimated

©AI4CODE, October 2025 Page 11 of (104)

D3.2: Improved Learning-Based Decoders (Final)

binary error pattern can be obtained by thresholding each ẽi, typically at 0.5, such that:

êi =
{

1, if ẽi ≥ 0.5
0, otherwise

for i = 1, . . . , n, (1.20)

Given the ground-truth binary error pattern e ∈ {0, 1}n, the BCE loss is then computed as:

L(e, ẽ) = 1
n

n∑
i=1

[−ei log2 (ẽi) − (1 − ei) log2 (1 − ẽi)] . (1.21)

This approach allows the DNN to focus on learning a per-bit likelihood of error, thus converting
the original intractable multiclass problem into a more manageable bitwise binary classification task.

1.4 DNN architectures for SBND

As previously discussed, model-free neural decoding benefits from the flexibility to adopt various NN
architectures. SBND is no exception. The underlying decoding framework places no restrictions on
the form of the noise estimation function, allowing researchers to explore a wide range of deep learning
models. In what follows, we briefly highlight some of the representative architectures that have been
explored in the literature.

1.4.1 Multi-layer Perceptron (MLP)

The MLP architecture was originally introduced in [1]. It follows the classical design of fully connected
(FC) feedforward layers, with a key modification: the input vector is concatenated to the input of each
hidden layer instead of being fed only to the first layer (see Fig. 1.3). This modification was borrowed
from the behavior of a BP decoder where intrinsic information in the form of LLR is fed at each
decoding iteration. The network typically consists of several hidden layers, each with a predefined
size. The output layer is set to have dimension n, matching the length of the code, to allow the
network to output an estimate of the binary error pattern.

FC1 FC2 FC3 FC

Figure 1.3: MLP-Based DNN architecture as proposed in [1]. There are l hidden layers each of size
αn while the output layer is of size n

1.4.2 Recurrent Neural Network (RNN)

Originally proposed in [1], the recurrent neural network (RNN) architecture consists of multiple stacked
Gated Recurrent Units (GRUs) [5] operating across timesteps. The GRU is a type of RNN that uses
gating mechanisms to selectively update the hidden state at each time step allowing them to remember
important information while discarding irrelevant details. A typical structure of a GRU is depicted
in Fig.1.4. Although RNNs are typically designed for sequential data, here the input, comprising the
magnitude vector |Lch| and syndrome s, is repeated at each timestep. The model is characterized
by three hyperparameters: the hidden size h that governs the model’s representational capacity, the

Page 12 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

tanh

.

.

+

1-.

Figure 1.4: A typical structure of a GRU.

number of layers ℓ which has the effect of deepening the model, and the number of timesteps ts which
governs the temporal dimensions.

To produce the final error pattern estimate ê, some implementations apply a FC layer of size n to
the concatenated vector of the outputs at all timesteps [6] as shown in Fig. 1.4.2, while others [7] use
only the output from the final timestep as input to a FC layer of size n, as illustrated in Fig. 1.4.2.

(a)

 FC

(b)

FC

Figure 1.5: A stacked GRU architecture followed by a fully connected layers (a) as in [6] (b) as in [7].

1.4.3 Transformer

Originally proposed in [2], the transformer-based architecture known as the Error Correction Code
Transformer (ECCT) was introduced as the core DNN for SBND models. ECCT, adapted from the
original Transformer architecture in [8], relies on self-attention mechanisms to capture global depen-
dencies in the input. It is characterized by three main hyperparameters: the embedding dimension d,
the number of attention layers ℓ, and the number of self-attention heads a. As shown in Fig. 1.6, the
architecture consists of three main stages: (i) Embedding, where the input pair (|Lch|, s) is projected
into a d-dimensional space, producing a sequence of (2n−k) embedding vectors; (ii) Decoding, repeated
ℓ times, consists of multi-head self-attention (MH-SA) with a heads and feed-forward sublayers, each
with pre-normalization layers and followed by residual connections; and (iii) Output, where the final
representations are processed by fully connected layers to produce the estimated error pattern ê. A
key component of ECCT is the attention mask, constructed as an extended adjacency matrix based
on the parity check matrix of the code. This enables the attention mechanism to relate bits beyond

©AI4CODE, October 2025 Page 13 of (104)

D3.2: Improved Learning-Based Decoders (Final)

the scope of individual parity check equations, thereby capturing rich structural dependencies. We
refer the reader to [2] for a detailed description of the mask construction.

More recently, [9] introduced an improved version of ECCT, called CrossMPT, which replaces the
original self-attention mechanism with a cross-attention design. This modification allows the model
to process the reliability and syndrome information separately while reducing the computational and
memory footprint. Separately, [10] proposed a general-purpose transformer-based decoder, called
FECCT, which operates across different codes and block lengths by introducing a universal represen-
tation of codewords and their structures, essentially by revisiting the embedding stage and making
the mask learnable.

Figure 1.6: Transformer-Based DNN architecture as proposed in [2].

1.5 Performance analysis of syndrome-based neural decoders

In this section, we analyze the performance of existing SBNDs implemented using different DNN
architectures. Our focus is primarily on stacked GRU and transformer-based models, as these archi-
tectures have attracted significant attention in the literature and demonstrated superior performance
compared to standard MLP-based designs [1]. For evaluation, we consider two BCH codes: the t = 2,
BCH(31, 21) code with minimum distance dmin = 5 and the t = 3, BCH(63, 45) code with dmin = 7.
The following subsections provide details on the implementation followed by the performance analysis.

1.5.1 Implementation Setup

In what follows we provide details on the implementation setup to train SBND models in a supervised
manner.

Model Input

The input to the DNN is the pair (|Lch|, s). Since any scaled version of the LLR provides sufficient
statistics for decoding, we replace |Lch| with the scaled reliability vector |y|. To ensure numerical
stability and maintain a consistent input scale, |y| is normalized by its maximum entry:

ỹ = |y|
max(|y|) ∈ [0, 1]n. (1.22)

Page 14 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

This normalization preserves the relative ordering of reliabilities and therefore does not affect the MLD
decision rule. In addition, the syndrome s ∈ {0, 1}m is represented in bipolar form as s̃ = (−1)s ∈
{1,−1}m, a representation reported in prior works [2, 7] and observed during our studies to slightly
improve training performance. The final model input is therefore the concatenated vector: (ỹ, s̃).

DNN Implementation

We consider two widely studied DNN architectures for SBND: a stacked GRU and a transformer-based
model. Their implementations are summarized as follows:

• GRU(ℓ, ts): This model consists of a stacked GRU with ℓ layers and ts timesteps. Following the
approach in [7], the error pattern estimate is obtained by applying a FC layer to the output of the
final timestep (see Fig. 1.4.2). The hidden size is fixed to h = 6(2n− k), as recommended in [7].
Our implementation uses PyTorch’s GRU module. We have noticed during our studies that
the bias terms of the GRU are not necessary which allowed to reduce the number of trainable
parameters.

• ECCT(d, ℓ): This model adopts the transformer-based ECCT architecture from [2], with em-
bedding dimension d and ℓ layers. The number of self-attention heads is fixed to a = 8. We use
the official source code from [11] for implementation.

Model Output

To complement the supervised learning setup, we construct the target labels e by applying a hard-
decision rule to the received vector y, under the common assumption that the all-zero codeword was
transmitted as stated previously. During inference, the model outputs an estimate of the binary error
pattern ê ∈ {0, 1}n, which is subsequently used to recover the transmitted codeword.

Model Training

At each training iteration, some batch of noisy realizations of the all-zero codeword is generated.
From these, we construct the input-output pairs (ỹ, s̃) along with the corresponding binary true error
pattern e, which serves as the target label. The training objective is to optimize the model parameters
by minimizing the BCE loss between the predicted error pattern ẽ in its probability estimate format
and the true error pattern e as defined in equation (1.21). The training hyperparameters are sum-
marized in Table 1.1. These parameters were selected to achieve representative performance that is
competitive with, and in some cases exceeds, results reported in the literature. However, no extensive
hyperparameter tuning or sweep was performed.

Hyperparameter GRU(5,3)/ECCT(64,6)-BCH(31,21) GRU(5,5)/ECCT(128,6)-BCH(63,45)

Initial learning rate 10−3 10−3

LR scheduler Cosine decay Reduce-on-plateau
Final learning rate 5 · 10−5 adaptive
Batch size 4096 4096
Optimizer Adam Adam
Training SNR 3 dB 2 dB

Table 1.1: Training hyperparameters for all model-code pairs.

We also emphasize an important detail often overlooked in previous studies: whether zero-syndrome
cases are included in the training set. In our implementation, we explicitly exclude such samples, since,
in practical decoder operation, only received words with non-zero syndromes are passed to the SBND
for correction.

©AI4CODE, October 2025 Page 15 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1.5.2 Performance Results

The performance of the trained models is evaluated following standard channel-coding practice by
computing the bit error rate (BER) and frame error rate (FER) via Monte Carlo simulations across a
range of SNR points. From a learning perspective, classification models are usually assessed using clas-
sification accuracy. If the model correctly predicts the full error pattern, then this counts as a success.
Therefore, the FER can be directly linked to the accuracy of the model by FER=1-test accuracy. To
ensure a comprehensive assessment, the models are tested on randomly generated codewords rather
than the all-zero codeword.

BCH(31,21). For the BCH(31, 21) code, we train two models: GRU(5, 3) and ECCT(64, 6). The
stacked GRU model comprises approximately 1.7 million trainable parameters, whereas the transformer-
based ECCT model has around 300k parameters. Both models are trained up to approximately 1
billion noisy samples. Fig. 1.7 presents the FER and BER performance of SBND decoders using these
models, compared to an order-2 OSD baseline, which is virtually identical to MLD performance on
these codes.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e

 E
rr

o
r

R
a

te
 (

P
la

in
)

a
n

d
 B

it
 E

rr
o

r
R

a
te

 (
D

a
s
h

e
d

)

GRU(5,3); 1B True EP

ECCT(64,6); 1B True EP

ML

Figure 1.7: FER and BER performance curves of the different models trained on the BCH(31, 21)
code and compared to MLD.

BCH(63,45). For the BCH(63, 45) code, we consider two models: GRU(5, 5) and ECCT(128, 6).
The GRU-based model contains about 6.5 million parameters, while the transformer-based model
has approximately 1.2 million. The GRU model is first trained up to 800 million samples and then
extended to roughly 3 billion samples, whereas the ECCT model is trained up to 1 billion and then 3
billion samples. Their FER and BER performance, shown in Figure 1.8, is compared to MLD.

The results reported in Figures 1.7 and 1.8 illustrate the potential of SBND, particularly in terms
of BER. However, the results also expose certain limitations of the approach, especially in the FER
curves. It should also be noted that although the models are trained on a single SNR point, they
demonstrate reasonable generalization across a range of SNR values.

For the BCH(31, 21) code, Figure 1.7 shows that both the stacked-GRU and ECCT models achieve
comparable performance, with a gap of approximately 0.22 dB from MLD in terms of BER and 0.48 dB
in terms of FER at an error rate of 10−3. For the BCH(63, 45) code, Figure 1.8 demonstrates a gap
of about 0.10 dB for BER and 0.28 dB for FER at the same error rate from the best trained model.
The results reported for the GRU-based models show comparable performances with the results of [1]

Page 16 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e

 E
rr

o
r

R
a

te
 (

P
la

in
)

a
n

d
 B

it
 E

rr
o

r
R

a
te

 (
D

a
s
h

e
d

)

GRU(5,5); 800M True EP

GRU(5,5); 3B True EP

ECCT(128,6); 1B True EP

ECCT(128,6); 3B True EP

ML

Figure 1.8: FER and BER performance curves of the different models trained on the BCH(63, 45)
code and compared to the order-2 OSD for this code.

and [12]. In addition, the results of the ECCT-based model on this code outperform significantly the
results reported in [2] due to training with almost 8× more samples.

It is worth noting that, for the BCH(31, 21) code, the ECCT model achieves performance com-
parable to the stacked-GRU while using nearly 5.5× fewer parameters. However, for the longer
BCH(63, 45) code, the ECCT model lags behind the GRU-based architecture. There is no clear con-
clusion on whether one architecture is superior to the other, especially given that we haven’t made an
extensive hyperparameter study.

1.5.3 SBND limitations

Scalability. Scaling SBND to longer and lower-rate codes introduces significant challenges. Com-
pared to BCH(31, 21), the BCH(63, 45) code not only has a larger block length but also a much
larger syndrome space, resulting in increased decoding complexity. Consequently, the model requires
higher representational capacity (more trainable parameters), and more training samples. These re-
quirements grow rapidly with block length and code dimension, forming a practical bottleneck for
deploying SBND on large codes.

Model size. A notable finding from the experiments is that SBND models can be quite large in
terms of the number of trainable parameters, even for shorter codes. For instance, the GRU-based
architecture used for BCH(31, 21) already contains approximately 1.7 million parameters. The model
size depends strongly on the architecture, and both GRU-based and ECCT-based models tend to scale
rapidly with code length, which poses significant challenges in terms of computational and storage
requirements.

Training data size. Achieving near-MLD performance with SBND models at least in BER perfor-
mance requires training on a massive number of on-demand generated samples, on the order of 109

in our experiments. This substantial data requirement highlights a lack of data efficiency in current
SBND approaches and raises concerns about the practicality of training such models.

Residual gap to MLD. Despite extensive training, SBND models do not fully close the gap to
MLD performance, particularly in terms of FER. Increasing the training dataset size initially improves

©AI4CODE, October 2025 Page 17 of (104)

D3.2: Improved Learning-Based Decoders (Final)

performance, but with diminishing returns. As shown in Fig. 1.9, both GRU(5, 3) and ECCT(64, 6)
exhibit a performance plateau at SNR = 3 dB, where additional training yields negligible gains, and
the FER asymptotically remains above the MLD benchmark. This plateau can be reduced by using
larger, more expressive models, though improvements also saturate beyond a certain point. Notably,
others have concluded similarly that some simple OSD decoders have been shown to outperform
transformer-based SBND models sometimes significantly for certain codes [13].

10 6 10 7 10 8 10 9 10 10

Number of training samples

10 -2

10 -1

10 0

F
E

R
 =

 1
 -

 T
e

s
t

A
c
c
u

ra
c
y

MLD

GRU(5,3) True EP

ECCT(64,6) True EP

Figure 1.9: FER as a function of the number of training samples for different SBND models on the
BCH(31,21) code, at SNR = 3 dB.

1.5.4 Summary

We introduced the principle of SBND and detailed its implementation within a supervised training
framework. We reviewed existing neural decoding architectures, with particular emphasis on two
prominent designs: a stacked GRU and a transformer-based model. We have evaluated these
models on various BCH codes, demonstrating that while they can approach near-MLD
performance in terms of BER, a noticeable FER gap remains. This holds true even after
large-scale training with billions of on-demand samples, indicating significant room for improvement.
We also highlighted the resource demands of this approach, showing that it can require
surprisingly large models (over 1M parameters) and heavy training data budgets, even for short codes,
raising questions about scalability. Several factors may contribute to the residual gap, including
limitations of the model architectures, insufficient diversity or informativeness of the
training data, and possible shortcomings in the training methodology. In the next section,
we place special focus on the latter two aspects.

1.6 Improving training of SBND Models

This section presents the first contribution toward enhancing the performance of SBND models, with
a particular focus on improving training efficiency and effectiveness. While recent research on SBND
has primarily focused on designing more capable architectures, comparatively little attention has been

Page 18 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

paid to the quality and structure of the training data and methodology. This is particularly concerning
given that, as shown in the previous chapter, even for a relatively short BCH(31, 21) code, achiev-
ing competitive performance required training on over one billion samples, which made us question
whether this is necessary. Motivated by this, we revisit the training data and methodology commonly
adopted in the literature. Specifically, we begin by identifying a mismatch between the current train-
ing targets and the actual decoding objective, which can limit performance. We then propose the
use of fixed datasets as a more sample-efficient alternative to the traditional on-demand data gen-
eration process. Furthermore, we introduce targeted sampling strategies that intend to concentrate
the training distribution on the most relevant examples allowing the model to learn more efficiently.
Finally, we leverage the automorphism group of the code to perform data augmentation, improving
generalization while maintaining efficiency.

1.6.1 Training for MLD

Current SBND models are trained for zero-error decoding. As discussed in Section 1.3.2, the target
labels used in training are the true binary error patterns. If the transmitted codeword is c and the hard
decision on the received word y is z, the corresponding true error pattern is obtained as etrue = z − c.
This means that the models are trained to exactly correct all channel-induced errors. However, in
reality, no decoder, including MLD, can ensure zero-error decoding. As there is no guarantee that
such an algorithm actually exists, training SBND models to meet such an unattainable objective can
fundamentally limit their performance.

Since the decoding objective is ultimately to approximate the MLD rule, we argue that the models
should be trained to reproduce MLD behavior, which is deterministic for a given y. This leads
us to replace the true error patterns with what we call ML error patterns. These are defined by
eML = z − cML, where cML is the MLD decision for the received word y, as shown in Fig. 1.10.

BPSK

>
< 0

MLD

Figure 1.10: ML error patterns vs. true error patterns.

To enable training on eML targets, we resort to an OSD [4]. Specifically, we employ an OSD with
a maximum reprocessing order p = ⌊dmin/4⌋, which have shown to provide near-MLD performance for
the short codes considered. Training data are generated via Monte Carlo simulation of the channel:
for each received vector, OSD produces the most likely codeword estimate cML, from which we infer
eML, serving as the training target labels.

©AI4CODE, October 2025 Page 19 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1.6.2 Training with fixed datasets

As discussed earlier, SBND models are typically trained using an on-demand data generation process,
where a fresh batch of noisy realizations is produced at each training step to form the input-output
pairs. This approach is in contrast to the conventional deep learning approach of using fixed datasets.
With fixed datasets, a finite set of training examples is generated once and reused throughout training.
During each epoch, the model iterates over the same examples, typically shuffled in a different order.

While the on-demand data generation approach avoids the extensive memory requirements asso-
ciated with storing large training sets, it is not sample-efficient. In practice, models often require
billions of samples to achieve a sufficiently good performance, even for relatively short codes. On the
other hand, with fixed datasets, optimizers like stochastic gradient descent (SGD) and its variants
tend to converge faster. The intuition is that repeated exposure to the same data allows the model to
incrementally refine its predictions. This leads to more stable gradient updates with reduced variance,
which ultimately contributes to faster convergence. This suggests that fixed datasets could be a more
sample-efficient approach.

In addition, adopting fixed datasets offers several other advantages. First, it provides full control
over the size, nature, and distribution of the generated data. This is particularly crucial when working
with ML error patterns: as explained in the previous section, generating these patterns requires OSD
decoding, which is prohibitively expensive if performed online at every training step. By pre-computing
ML error patterns and storing them in a fixed dataset, we avoid this computational bottleneck.
Moreover, fixed datasets enable reproducibility and fair comparison. Once generated, they can be
shared publicly, allowing researchers to benchmark their models under identical conditions.1

We intend to confirm whether training models on fixed datasets is more sample-efficient than
training on-demand. Then, with the help of fixed datasets, we wish to asses whether training with
ML error patterns improve the model’s performance. To this end, we consider again the two BCH
codes, namely the BCH(31, 21, dmin = 5) and BCH(63, 45, dmin = 7) and we employ the same model
architectures introduced in Section 1.5.1: GRU(5,3) and ECCT(64,6) models for the BCH(31, 21, 5)
code, and the GRU(5,5) and ECCT(128,6) models for the BCH(63, 45, 7) code. We train these models
on fixed datasets, either with true error patterns of ML error patterns. Since training on fixed datasets
can eventually lead to model overfitting, we adjusted the training procedure accordingly. The new
hyperparameters are now summarized in table 1.2. Overfitting occurs when the model excels in
preforming predictions on the training samples but fails miserably to generalize to unseen ones. This
happens because the model has memorized the training set, learning noise and irrelevant patterns
rather than capturing the underlying mapping rule. This leaves the model incapable of performing
well on new test data, even if it differs only slightly from the training data.

Hyperparameter GRU(5,3)-BCH(31,21) ECCT(64,6)-BCH(31,21) GRU(5,5)-BCH(63,45) ECCT(128,6)-BCH(63,45)

Epochs 256 256 256 128
Batch size 4096 4096 4096 4096
Optimizer AdamW AdamW AdamW AdamW
Dropout 0.2 0.01 0.2 0.01
Initial learning rate 0.001 0.001 0.0005 0.0006
Weight decay 0.02 None 0.02 0.01
Training SNR 3 dB 3 dB 2 dB 2 dB

Table 1.2: Training hyperparameters for all model-code pairs.

Should one train on demand or with fixed datasets?

Fig. 1.6.2 presents the performance of the GRU(5,3) model trained on a fixed dataset of 4M true error
patterns for the BCH(31, 21, 5) code. Its performance is on par with, and even slightly surpasses, the
model discussed in section 1.5, which was trained on 1B on-demand generated error patterns. This
represents 250× reduction in training samples. Similarly, for the BCH(63, 45, 7) code in Fig. 1.6.2,

1Some of the datasets created for this study are available on the AI4CODE project homepage
https://ai4code.projects.labsticc.fr/.

Page 20 of (104) ©AI4CODE, October 2025

https://ai4code.projects.labsticc.fr/software

D3.2: Improved Learning-Based Decoders (Final)

training with a fixed dataset of 100M samples achieves comparable results to when training on 800M
on-demand samples, corresponding to an 8× reduction in sample size. This highlights that training
with fixed datasets is substantially more sample-efficient than training with on-demand data, confirm-
ing that models indeed benefit from seeing the same examples several times during training.

(a)
2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -4

10 -3

10 -2

10 -1

F
ra

m
e

 E
rr

o
r

R
a

te
 (

F
E

R
)

GRU(5,3) 1B True EP on demand

GRU(5,3) 4M True EP Fixed

MLD

(b)
1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e

 E
rr

o
r

R
a

te
 (

F
E

R
)

GRU(5,5); 800M True EP on demand

GRU(5,5); 100M True EP Fixed

ML

Figure 1.11: FER performance of GRU models trained using true error patterns either on-demand or
with a fixed dataset: (a) GRU(5,3) on BCH(31, 21, 5), (b) GRU(5,5) on BCH(63, 45, 7).

Should one learn to correct MLD or true error patterns?

2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -4

10 -3

10 -2

10 -1

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

MLD

GRU(5,3) 4M True EP

GRU(5,3) 4M ML EP

GRU(5,3) 16M ML EP

ECCT(64,6) 4M True EP

ECCT(64,6) 4M ML EP

ECCT(64,6) 16M ML EP

Figure 1.12: FER performance of different SBND models trained on true vs. ML error patterns for
the BCH(31, 21, 5) code.

In Fig. 1.12, we compare the performance of the GRU(5,3) and ECCT(64,6) models on the
BCH(31, 21, 5) code when trained on fixed datasets using either true error patterns or ML error
patterns. The results show that models trained on ML error patterns consistently outperform those
trained on true error patterns across all dataset sizes. A similar trend is observed for the BCH(63, 45, 7)
code in Fig. 1.13. Both the GRU-based and the transformer-based models outperformed their coun-
terparts trained on true error patterns. Note that the ECCT(128,6) trained on a fixed dataset of 64M

©AI4CODE, October 2025 Page 21 of (104)

D3.2: Improved Learning-Based Decoders (Final)

true error patterns differ slightly in terms of hyperparmeters compared to the one reported in table
1.2. This includes a slightly larger learning rate of 0.0008 and no weight decay factor.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -4

10 -3

10 -2

10 -1

10 0
F

ra
m

e
 E

rr
o
r

R
a
te

 (
F

E
R

)
GRU(5,5); 100M True EP

GRU(5,5); 100M ML EP

ECCT(128,6); 64M True EP

ECCT(128,6); 64M ML EP

ML

Figure 1.13: FER performance of different SBND models trained on true vs. ML error patterns for
the BCH(63, 45, 7) code.

These findings suggest that training on ML error patterns allow models to generalize better. It
is important to note that the difference between ML and true error pattern datasets arises only in
instances where MLD makes a decoding error. To effectively train models on ML error patterns, one
should select lower SNR points, where this difference is more pronounced. Nevertheless, the chosen
SNR values for both codes in these experiments appear sufficient to highlight the benefits of ML-based
training.

Performance limit of architectures and models

Fig. 1.14 shows the FER as a function of the number of training samples for the BCH(31, 21) code
at SNR = 3 dB, now including models trained on fixed datasets. The results reinforce the conclusion
that training on fixed datasets is significantly more sample-efficient compared to training on-demand.
Moreover, the figure clearly illustrates that models trained on ML error patterns consistently outper-
form those trained on true error patterns, across both the GRU(5,3) and ECCT(64,6) architectures.
This advantage is especially pronounced for smaller dataset sizes.

As observed in earlier chapters, the performance of these models approaches an asymptotic plateau
beyond which additional training data brings diminishing returns. A similar saturation effect is evident
when training on fixed datasets. For example, for this code, increasing the size of the dataset beyond
approximately 16M ML error patterns yields only marginal performance improvements. Although
the performance was improved by training on ML error patterns, a noticeable gap to MLD is still
observed. As discussed in 1.5.3, this gap can essentially be reduced when using more complex models
but still up to a certain limit.

Page 22 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

10 6 10 7 10 8 10 9 10 10

Number of training samples

10 -2

10 -1

10 0

F
E

R
 =

 1
 -

 T
e

s
t

A
c
c
u

ra
c
y

MLD

GRU(5,3) True EP on demand

GRU(5,3) True EP dataset

GRU(5,3) ML EP dataset

ECCT(64,6) True EP on demand

ECCT(64,6) True EP dataset

ECCT(64,6) ML EP dataset

Figure 1.14: FER performance of different SBND models trained on true vs. ML error patterns for
the BCH(63, 45, 7) code.

1.6.3 Optimizing the training distribution

Training data for SBND models are typically generated via Monte Carlo simulation (with either true
or ML error patterns), as discussed previously. While this follows standard practice in channel coding,
it is inefficient for rare-event learning. The resulting datasets are dominated by samples of low-weight
error patterns that are easy for the model to correct.

This imbalance originates from the nature of the AWGN channel. Specifically, the BI-AWGN
channel induces a binomial distribution on the Hamming weight wH(etrue) of the true error patterns:

pchan(w) =
(
n

w

)
pw

b (1 − pb)n−w, w = 0, . . . , n, (1.23)

where pb = 1
2 erfc

(√
Eb
N0

)
is the bit error probability. Consequently, datasets generated directly

from the BI-AWGN channel are heavily skewed toward low-weight errors. By contrast, higher-weight
error patterns are both underrepresented and far harder to correct, yet the model’s ability to handle
them largely determines its FER performance, especially at moderate to low SNR.

In the broader deep learning literature, it is well-recognized that not all training samples contribute
equally to effective learning [14]. Recent research emphasizes dataset curation and sample selection
strategies to prioritize the most informative examples for training in an effort to improve the model’s
generalization capability [15–17]. Similarly, in neural decoding, [18] was among the first to advocate for
smarter sampling strategies to improve the efficiency of model-based neural BP decoders. Motivated
by these insights, and with the help of fixed datasets, we have full control to reshape the training
distribution for SBND models by carefully selecting the received words y with their associated error
patterns e to ensure that the models are exposed to more meaningful training examples. To this end,
we leverage upon the Hamming weight of the error patterns as a proxy metric to help distinguish
informative and less informative samples. Accordingly, we modify the empirical weight distribution
p(w) of the error pattern.

©AI4CODE, October 2025 Page 23 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Determining an optimal training distribution for neural decoding remains a difficult challenge. In
the absence of well-designed guidelines, we investigate several heuristic approaches to construct the
training dataset. Our goal is twofold: (1) to empirically demonstrate that using distinct distributions
for training and testing can enhance data efficiency and boost model performance, and (2) to identify
simple yet effective heuristics for sample selection. We explore four different methods, each relying
on Monte Carlo simulations of the OSD decoder, which differ in their sample selection criteria. The
first method serves as a baseline reference, while the remaining three attempt to filter out the most
impactful MLD error patterns that critically influence FER. A brief description of each approach
follows.

1 2 3 4 5

Hamming weight of error pattern

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

b
a
b
ili

ty
 o

f
o
c
c
u
re

n
c
e

p
chan

(w)

p
ml

(w)

p
uni-w

(w)

p
is

(w)

p
uni-s

(w)

Figure 1.15: Weight distribution of error patterns obtained with different training set constructions
for the (31, 21) code at SNR = 3 dB.

Method 1: Using the channel error distribution. This method serves as the baseline for
comparison. As described in Section 1.6.1, training targets are derived from a Monte Carlo simulation
of the AWGN channel followed by decoding with MLD. The resulting ML error patterns, eML, are
collected directly from the decoder output without applying any form of biased sampling or filtering.
Since the input to the decoder reflects the binomial distribution pchan(w) of the AWGN-induced error
weights, the output patterns inherit a transformed distribution pML(w). This distribution differs a
little from the original channel distribution and is typically more concentrated around lower-weight
error patterns as seen in Fig. 1.15. Since MLD decodes to the nearest codeword, if MLD commits a
decoding error this will change distribution from the original and explain the large low-weight patterns
at it output. This is explained by the fact that MLD decodes to the nearest codeword. When this
decoded codeword is incorrect, the original distribution begins to shift and becomes biased toward
lower-weight error patterns that result from decoding to nearby codewords.

Method 2: Using a uniform distribution of the weights. To promote balanced learning across
error weights, this method constructs a training dataset with a uniform distribution over the Hamming
weights of the error patterns. First, we discard all ML error patterns eML whose Hamming weight
exceeds a predefined threshold wmax (set to 4 here). From the remaining error patterns, we then
sample to achieve a uniform weight distribution, denoted as puni-w(w) = 1/wmax for w = 1, . . . , wmax,
within the dataset.

Page 24 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Method 3: Using a biased input error distribution. The training examples y provided to
the MLD are generated according to an input distribution p

(is)
chan(w), which differs from the binomial

distribution pchan(w) induced by the AWGN channel. Specifically, the noise importance sampling
distribution p(is)

chan(w) is designed to be optimal in terms of minimizing the number of required samples
to achieve a target error rate by encouraging the occurrence of errors. It is determined following
the procedure outlined in [19]. The corresponding weight distribution of error patterns at the MLD
decoder output will be referred to as pis(w). Compared to the standard approach (method 1), this
method results in a distribution that places greater emphasis on error patterns of weights 3 and 4 as
illustrated in Fig. 1.15.

Method 4: Using a biased input error distribution. Since the syndrome plays a key role in the
MLD decision rule and is also part of the model input, it is reasonable to ensure that all possible non-
zero syndromes are well represented in the training set. A simple yet effective way to achieve this is to
filter the ML error patterns collected from the output of MLD, selecting an equal number of patterns
for each syndrome value. As with method 3, this naturally places more emphasis on error patterns
of weights 3 and 4. This approach can also be combined with methods 2 and 3. Unlike methods
1–3, which scale with the code parameters (n, k), this fourth method requires that the total number
of syndromes 2n−k remains reasonably small. The resulting error weight distribution is denoted by
puni-s(w).

We aim to assess whether the proposed heuristics enable more efficient training of SBND models,
and whether any method consistently outperforms the others. For that, we consider the BCH(31, 21, 5)
code with the GRU(5,3) model, trained as described in table 1.1. We construct four distinct datasets,
each containing 4M samples at an SNR of 3 dB, corresponding to the four proposed sampling distri-
butions. Using these datasets, we train the GRU(5,3) model under the same setup. During inference
time, all models are tested under the same conditions as described previously: random noisy code-
words generated using Monte Carlo simulations across various SNRs. The resulting FER performance,
shown in Fig. 1.16, indicates that training on datasets with distributions differing from the natural
BI-AWGN-induced distribution, particularly method 3, leads to models with superior performance
compared to those trained with error patterns obtained from standard Monte Carlo simulation using
true or MLD (method 1). Although no single method emerges as clearly optimal in this example, the
results underscore the benefits of optimizing the training distribution, especially when dataset sizes
are limited. The results show as well, that while training and testing distributions are distinct, the
models were capable to generalize reasonably well.

For the BCH(63, 45, 7) code, we trained a GRU(5,5) model following the setup described in Sec-
tion 1.17, using ML error patterns sampled according to method 3. Its performance is compared
against the two baselines: training on the standard dataset of 100 ML error patterns and training
with 3 billion on-demand samples. Remarkably, using only a 32M-sample dataset, the model achieves
slightly better performance, underscoring the value of carefully curated training data, which not only
allows the models to generalize better but to do so with much fewer samples. Expanding the dataset
to 64M samples yields only marginal gains (not shown here), indicating, similar to the observations
for the BCH(31, 21, 5) code, that the model is nearing its performance ceiling. The same figure also
reports the BER of this trained model, showing that its BER is nearly equivalent to MLD, similar to
the model trained on 3B true error patterns, but with almost 100× fewer training samples.

1.6.4 Taking advantage of data augmentation

Data augmentation is a widely adopted strategy in deep learning to enhance model generalization,
especially when training data is limited [20]. It involves applying a set of predefined transformations
to each training example, thereby increasing the diversity of data encountered during training. Data
augmentation has been particularly praised for its effectiveness in classification tasks, especially image
classification, where a variety of distortions, such as horizontal flipping, random cropping, color jitter-
ing, and affine transformations, can be applied. These augmentations help models become robust to

©AI4CODE, October 2025 Page 25 of (104)

D3.2: Improved Learning-Based Decoders (Final)

2 2.5 3 3.5 4 4.5 5 5.5

Eb/N0 (dB)

10 -4

10 -3

10 -2

10 -1

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

MLD

True EP

Method 1

Method 2

Method 3

Method 4

Figure 1.16: FER for a GRU(5, 3) model trained to decode the BCH(31, 21,5) code using different
datasets of 4M samples.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
P

la
in

)
a
n
d
 B

it
 E

rr
o
r

R
a
te

 (
D

a
s
h
e
d
)

GRU(5,5); 3B True EP on demand

GRU(5,5); 100M ML EP (Method 1)

GRU(5,5); 32M ML EP (Method 3)

ML

Figure 1.17: FER and BER for a GRU(5, 5) model trained to decode the BCH(63, 45,7) code using
models trained with different strategies or distributions.

variations in the input, ultimately improving their generalization capabilities and consequently reduc-
ing the model’s tendency to overfit. In the context of training a SBND, we propose leveraging the code
automorphism group as a natural augmentation method. Because these transformations preserve the
code’s structure, they enable the efficient generation of new, equivalent training samples from existing

Page 26 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

ones.
Recall that the MLD rule (1.10) selects the codeword c ∈ C that minimizes the Euclidean distance

to the received vector y. Now consider applying a permutation π ∈ Aut(C), i.e., an automorphism of
the code C, to all coordinate positions. Since π maps any codeword to another valid codeword, the
set C is invariant under π. Moreover, the Euclidean norm is also invariant under permutations, i.e.,

||y − (−1)c∥2 = ∥π(y) − (−1)π(c)∥2, (1.24)

where π(c) =
(
cπ−1(1), cπ−1(2), . . . , cπ−1(n)

)
. As a result, the ML decision does not change in substance;

it simply gets permuted. That is,

π(ĉ) = π

(
arg min

c∈C
∥y − (−1)c∥2

)
= arg min

π(c)∈C
∥π(y) − (−1)π(c)∥2, (1.25)

which means that the ML decision for π(y) is simply the permuted version of the ML decision for y.
Equivalently, if z = c + e, where z is the hard decision on the received vector and e is the estimated
error pattern on codeword c, then the MLD rule (1.18) select the error pattern within the syndrome
coset indexed by z that minimizes the sum of reliability values at the erroneous bit positions. Now,
assume we apply a permutation π ∈ Aut(C) to all coordinate positions. Then,

π(z) = π(c + ê) = π(c) + π(ê), (1.26)

where π(c) ∈ C by definition of a code automorphism. To estimate the error pattern on the permuted
input π(z), one must solve the same minimization problem but with permuted reliability values:

π(ê) = arg min
e′∈{0,1}n

e′H⊤=π(z)H⊤

∑
i:e′

i=1
|Lch

π−1(i)|. (1.27)

Therefore, if êML is the MLD error pattern corresponding to the pair (|y|, s), then for any auto-
morphism π ∈ Aut(C), the permuted pattern π(êML) is the MLD decision for the transformed input(
|π(y)|, s′ = π(z)H⊤

)
. Thus, by permuting both the reliability vector |y| and the target error pat-

tern êML, and by recomputing the associated syndrome, code automorphisms offer a simple way to
introduce diversity into the training examples presented to the neural decoder during training.

To assess the effectiveness data augmentation, we trained a GRU(5,3) model to decode the
BCH(31, 21, 5) code. Initially, the model was trained on three datasets containing 1, 4, and 16 million
distinct examples of ML error patterns, respectively. These are constructed following method 1, that is
the standard Monte Carlo ML error patterns. We then repeated the experiment with two augmented
datasets of sizes 4 and 16 million examples. Both were derived from the 1-million-example dataset
by applying, to each example, 4 and 16 random permutations, respectively, chosen from the 155 per-
mutations available (5 × 31) for this code. This setup represents a worst-case scenario for diversity,
as augmentation was performed once during dataset construction rather than the typical approach
of generated the augmented examples on-the-fly during batch loading. Despite this, remarkably, the
performance results reported in Fig. 1.18 show no difference compared to the ideal case of fully distinct
examples.

1.6.5 Reflection on the proposed heuristics to improve the training of SBND

We have explored a set of heuristics designed to enhance the training of SBND models, focusing
on both the nature and quality of the training data. By training the model to correct MLD error
patterns, rather than targeting the idealized and practically unattainable true error patterns, and
by carefully optimizing the training distribution, we have shown that we can do more with less:
achieving superior performance with significantly fewer training samples. This improvement is made
possible through the use of fixed datasets, which allow us to control data diversity and quality more
effectively. This principle is further reinforced by our proposed data augmentation strategy based on
code automorphisms, which effectively introduces diversity to the training process allowing models

©AI4CODE, October 2025 Page 27 of (104)

D3.2: Improved Learning-Based Decoders (Final)

2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -5

10 -4

10 -3

10 -2

10 -1

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

1M unique examples

4M unique examples

16M unique examples

1M unique examples x 4 perms

1M unique examples x 16 perms

MLD

Figure 1.18: FER of a GRU(5,3) model trained on the BCH code (31,21,5) with sets of ML error
patterns that are unique or augmented by automorphisms.

to generalize better on even fewer samples. Although we have not fully closed the gap to MLD, our
findings emphasize that the quality and structure of the training data play a far more critical role and
deserve more attention in the research on SBND. It is noteworthy that these proposed heuristic are
not limited to SBND and can it turn be applied to any neural decoders.

1.7 Improving SBND performance at inference time

While careful training design is crucial for achieving strong baseline performance, further improvements
can often be obtained during inference time without modifying the underlying trained model. In
this section, we explore two distinct strategies to enhance the decoding capability of SBND models
post-training. The first strategy is iterative correction which draws inspiration from the principle
of self-boosting, leveraging multiple decoding iterations to refine the model’s own predictions. The
second approach employs test-time augmentation (TTA) through code automorphisms, by creating an
ensemble of decoding attempts, on different inputs generated by exploiting the inherent symmetries
of the code. Both of these techniques provide means to improve the performance of SBND models. In
what follows, we will present the principle of both approaches and evaluate them.

1.7.1 Iterative Correction

Even after a well-trained SBND model outputs its estimate of the binary error pattern ê, there is no
guarantee that the recovered codeword ĉ = z − ê is a valid one. This limitation arises because SBND
models are typically trained with BCE loss, which optimizes bit-wise accuracy but does not directly
enforce code constraints. As a result, decoding failures may occur when the estimated error pattern
does not correspond to a valid codeword. To mitigate this issue, post-processing strategies can be
applied during inference to further refine the decoded output.

Two key strategies have been proposed in the literature to improve decoding success in such cases:
iterative error correction (IEC) [21] and iterative error decimation (IED) [22]. Both approaches

Page 28 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

operate by launching additional decoding attempts when the initial SBND output fails, but they
differ in how they update the decoder input and refine the error estimate. These iterative methods
implement sort of a self-boosting mechanism by using the model’s previous outputs as feedback to
progressively enhance decoding accuracy through repeated refinement. This is inspired by the boosting
technique used in deep learning, where multiple weaker models are employed in an iterative fashion
leveraging upon each other’s predictions to improve accuracy.

Iterative Error Correction (IEC). In IEC, the SBND model is invoked iteratively to refine its
estimate of the error pattern. At each iteration, the full predicted error vector is used to update the
current hard decision, aiming to eventually recover a valid codeword.

Let z(0) denote the initial hard decision on the received vector, and let s(0) = z(0)HT be the initial
syndrome. IEC proceeds at iteration j ≥ 1 as follows. The SBND model is applied to the pair
(|Lch|, s(j)) to produce a binary error estimate ê(j) ∈ {0, 1}n. The hard decision is then updated via

z(j+1) = z(j) − ê(j).

The new codeword estimate is
ĉ(j) = z(j+1),

and the corresponding updated syndrome is computed as

s(j+1) = z(j+1)H⊤.

If s(j+1) = 0, a valid codeword has been found and decoding terminates with ĉ(j). Otherwise, the
process continues to the next iteration j + 1. The magnitude vector |Lch| remains fixed throughout
all iterations. The iterative process stops when either a valid codeword is obtained or a maximum
number of iterations jmax is reached.

DNN

DNN

Iteration Iteration

Figure 1.19: A general diagram describing the process of iterative error correction (IEC).

One would think that each prediction incrementally removes noise and improves the likelihood of
successful decoding in subsequent iterations. However, our studies suggest a more complex mechanism.
Rather than a systematic noise reduction, the model appears to perform a form of random walk over
the syndrome space. With each iteration, it encounters a new syndrome, and decoding success is more
likely once it reaches a familiar or previously learned syndrome. The overall scheme is illustrated in
Fig. 1.19.

Iterative Error Decimation (IED). In contrast to IEC, which refines the entire estimated error
pattern across iterations, IED adopts a more conservative correction strategy that flips only one bit
at a time based on the decoder’s confidence scores.

©AI4CODE, October 2025 Page 29 of (104)

D3.2: Improved Learning-Based Decoders (Final)

If the initial prediction (iteration j = 0) fails to produce a valid codeword, IED is invoked. The
SBND model outputs the soft error probability estimate ẽ(j) ∈ [0, 1]n at iteration j. The index of the
bit deemed most likely to be erroneous is given by

i∗(j) = arg max
i∈{1,...,n}

ẽ
(j)
i .

We then construct the tentative binary error pattern ĕ(j) ∈ {0, 1}n as

ĕ
(j)
i =

{
1, if i = i∗(j),

0, otherwise.

This pattern is used to update the hard-decision vector by:

z(j+1) = z(j) − ĕ(j).

The codeword estimate becomes ĉ(j) = z(j+1), and the new syndrome is

s(j+1) = z(j+1)H⊤.

DNN

Iteration

DNN Set max index to
1, rest to 0

Iteration

Figure 1.20: A general diagram describing the process of iterative error decimation (IED).

A new decoding iteration is launched using the updated pair (|L|, s(j+1)) as input to the SBND.
This process is repeated iteratively, refining the estimate one bit at a time rather than all at once.
The intuition behind IED is that each iteration attempts a more targeted correction addressing the
single most suspicious bit. The complete IED scheme is depicted in Fig. 1.20.

Now that both IC strategies have been described, we aim to evaluate their impact on the FER
performance of pre-trained SBND models and assess whether one consistently outperforms the other.
We consider the GRU(5,5) SBND model trained on the BCH(63, 45, 7) code using 100 million ML
error patterns (method 1), as described in previous section. We tested the model with both strategies
and the results are presented in Fig. 1.21.

Page 30 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

(F
E

R
)

GRU(5,5)

GRU(5,5); 2 itr IEC

GRU(5,5); 5 itr IEC

GRU(5,5); 2 itr IED

GRU(5,5); 5 itr IED

ML

Figure 1.21: Frame error rate for GRU(5,5) model trained on 100M MLD error patterns dataset
(method 1) on BCH(63, 45, 7) code with inference time iterative correction.

From the figure, we observe that applying just one additional iteration of IEC significantly reduces
FER, bringing performance closer to that of MLD. Further iterations provide only marginal additional
improvement, indicating diminishing returns beyond the initial refinement. In comparison, IED ini-
tially lags behind IEC at low iteration counts, which is expected since IED targets the correction of
a single bit per iteration. This localized correction strategy is less likely to resolve all errors in early
iterations. However, with enough iterations, IED can match or even outperform IEC, suggesting that
its focused corrections can be effective with enough iterations. Overall, both techniques are effective
inference-time enhancements. IEC offers rapid improvement with fewer iterations, while IED shows
potential for superior performance when more decoding iterations are permitted.

We then consider the ECCT(64,6) model trained on the BCH(31, 21, 5) code using 4 million ML-
IS error patterns (sampling method 3). The results, shown in Fig. 1.22, demonstrate that even
transformer-based architectures benefit from iterative enhancement. With just two iterations of IEC,
the FER performance already approaches that of MLD. Notably, IED with five iterations achieves a
slightly better performance than IEC.

1.7.2 Test-time Augmentation (TTA)

As introduced in Section 1.6.4, code automorphisms can enhance training by introducing input diver-
sity. This principle can also be leveraged at inference time through Test-Time Augmentation (TTA),
where multiple permuted versions of the received word are decoded in parallel to improve robustness.

An illustrative diagram is given in Fig. 1.23. Let P = {π1, . . . , πT } ⊆ Aut(C) be a selected subset
of automorphisms of the code C. Let y denote the received word, and z its hard decision. For each
permutation πj ∈ P, we construct a transformed input to the model as (πj(|Lch|), πj(z)H⊤). The
model processes each input and produces a continuous output logits vector ξ(j), which is mapped back
to the original bit positions using π−1

j , the inverse permutation. The corresponding estimated binary

©AI4CODE, October 2025 Page 31 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1 2 3 4 5 6

Eb/N0(dB)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

(F
E

R
)

ECCT(64,6)

ECCT(64,6); 2 itr IEC

ECCT(64,6); 5 itr IED

ML

Figure 1.22: Frame error rate for ECCT(64,6) model trained on 4M ML-IS error patterns dataset
(method 3) on BCH(31, 21, 5) code with inference time iterative correction.

error pattern ê(j) is then recovered as detailed in Section 1.3.2 via:

ê
(j)
i =

1,
1 − ξ

(j)
π−1

j (i)

2 ≥ 0.5

0, otherwise
for i = 1, . . . , n. (1.28)

The decoded candidate codewords are finally given by c(j) = z−ê(j). Among the T decoded candidates
{c(j)}T

j=1, only those that are valid codewords, c(j)H⊤ = 0, are retained in a list L. From this list, a
final decision is made by selecting the most likely codeword under the ML criterion, that is selecting
the candidate that minimizes the Euclidean distance to the received word y:

ĉ = arg min
c∈L

∥y − (−1c)∥2. (1.29)

In most cases, there will be no valid codewords in the list L. Therefore, two alternative strategies
were explored to aggregate the different model predictions and produce a final decision:

• Most confident logit selection: For each bit position i = 1, . . . , n, select the logit with the
maximum absolute value across the T candidates:

ξ∗
i = ξ

(j∗)
π−1

j∗ (i) where j∗ = arg max
j=1,...,T

∣∣∣∣ξ(j)
π−1

j (i)

∣∣∣∣ .
• Averaging candidate logits: Compute the average logit over all candidates for each bit posi-

tion:

ξ∗
i = 1

T

T∑
j=1

ξ
(j)
π−1

j (i).

After obtaining the aggregated logit vector ξ∗ = (ξ∗
1 , . . . , ξ

∗
n) by either method (in our case, averaging

was found to give better performance), the final estimated error pattern ê is recovered by applying

Page 32 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

>
< 0

| . |

DNN

>
< 0

| . |

DNN

Combine
preds

logit-to-prob

Figure 1.23: An illustrative diagram for the TTA process with T = 2 permutations.

the thresholding rule as previously described, and the corresponding decoded codeword is computed
as ĉ = z − ê.

Our automorphism-based version of TTA for SBND can be related to the automorphism ensemble
decoding (AED) approach advocated in [23], which exploits the algebraic symmetries inherent in the
code’s automorphism group to enhance decoding performance. Instead of relying on a single decoding
attempt, AED applies multiple decoders in parallel, each operating on a permuted version of the
received word generated by different automorphisms. By doing so, it leverages the fact that code
automorphisms preserve code structure, allowing diverse yet equivalent perspectives of the same noisy
input. This ensemble of decoding attempts increases the chances of successful decoding by effectively
combining multiple candidate solutions. In our case, the SBND decoder serves as the base decoder
block within the AED framework.

To evaluate the effectiveness of TTA, we consider the GRU(5,3) model trained on the BCH(31, 21, 5)
code using the 4M ML-IS dataset (method 3). As shown in Fig. 1.24, TTA provides a noticeable im-
provement over standard SBND decoding with a single forward pass. In particular, applying TTA
with 16 permutations achieves performance comparable to using two iterations of IEC with the same
model.

A similar trend is observed in Fig. 1.25 for the GRU(5,5) model trained on the BCH(63, 45, 7)
code using the 100 ML error pattern dataset (method 1), where TTA with 16 permutations brings the
model’s performance significantly closer to that of MLD, while also matching the performance of IEC
with five iterations.

1.7.3 Reflection on the inference time SBND enhancement techniques

We have explored some techniques to enhance the performance of already trained SBND models.
These approaches are applied at inference time and do not require modifying the model architecture
or retraining. IEC and IED refine the decoder’s output by iteratively feeding back the model’s own
predictions, forming a self-boosting loop that helps correct errors missed in a single forward pass. In
contrast, TTA adopts an AED-style strategy by leveraging the code’s automorphism group to create
diverse representations of the received word. Each permuted version is decoded independently, and
the outputs are aggregated to improve overall decoding performance. In principle both TTA and
self-boosting strategies can be combined but this introduces an additional high computational cost
not worthy of the little gain that can be achieved.

That said, both strategies can push SBND models closer to near-MLD FER performance. However,
this comes at the cost of increased computational complexity. All such methods require multiple
forward passes through the model, which can significantly impact inference time, particularly for
larger codes and more complex model architectures. Moreover, it is important to recognize that these
enhancements are effective largely because the trained model remains an imperfect approximation

©AI4CODE, October 2025 Page 33 of (104)

D3.2: Improved Learning-Based Decoders (Final)

2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -5

10 -4

10 -3

10 -2

10 -1

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

GRU(5,3)

GRU(5,3); 16 perms TTA

GRU(5,3); 2 itr IEC

MLD

Figure 1.24: FER performance measured with and without data augmentation (TTA) on
BCH(31, 21, 5).

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

GRU(5,5)

GRU(5,5); 5itr IEC

GRU(5,5); 16 TTA

ML

Figure 1.25: FER performance measured with and without test time augmentation (TTA) on
BCH(63, 45, 7) compared to IEC.

of MLD. As the model’s accuracy improves, the marginal benefits of applying such inference-time
techniques diminish.

Page 34 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

It is worth noting that if the code of interest is equipped with a hard-decision algebraic decoder
(HDD), the most efficient way to improve performance, while keeping inference costs low, is simply to
run the HDD on the model’s output whenever the prediction is not a valid codeword. Since the models
are trained with a BCE loss, which encourages bit-wise error minimization, there is a strong potential
for the HDD to correct the remaining residual errors in a significant fraction of cases, as discussed
in [24]. This is supported by the results in Fig. 1.26, where the GRU(5,5) model trained on the
t = 3 error-correcting BCH(63,45,7) combined with a simple HDD achieves performance comparable
to other inference-time enhancement techniques especially at higher SNRs.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

GRU(5,5)

GRU(5,5); 5itr IEC

GRU(5,5); 16 TTA

GRU(5,5); HDD

ML

Figure 1.26: FER performance measured with a HDD and compared to inference-time enhancement
techniques on BCH(63,45,7).

1.8 Conclusion

In this first contribution to WP3.2 of AI4CODE, we introduced a set of methods aimed at maximizing
the performance of SBND models during both training and inference. These methods represent a
fusion of best practices from deep learning and classical coding theory.

On the training side, we showed that carefully curated, fixed datasets allowed SBND models
to achieve state-of-the-art performance without any changes to the base model architec-
ture. By aligning the data with the decoding objective, incorporating deep learning principles
to optimize the training distribution, and introduce diversity through data augmenta-
tions, we enabled more efficient and generalizable learning. To push performance even further at
inference time, we explored enhancement techniques inspired by both domains. Iterative correc-
tion employs the model in a self-improving loop to refine predictions across iterations, inspired by
the boosting technique of deep learning. From coding theory, we adapted the Automorphism
Ensemble Decoding (AED) strategy to Test-Time Augmentation (TTA), leveraging the code
automorphism group. These strategies enable SBND models to approach near-MLD perfor-
mance in terms of FER, without modifying the model architecture or retraining, though
at the cost of increased computational complexity.

©AI4CODE, October 2025 Page 35 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1 2 3 4 5 6

Eb/N0(dB)

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

ECCT (Ours)

ECCT

CrossMPT

FECCT

AECCT

ECCM

ML

Figure 1.27: BER performance measured of our ECCT(128,6) model trained on BCH(63,45,7) with
64M ML error patterns generated following method 3 and compared to several reference transformer-
based SBND models.

In Fig. 1.27, we show the BER performance of our ECCT(128,6) trained on BCH(63,45,7) code with
64M ML error patterns generated according to method 3, comparing it to several reference transformer-
based SBND models. These include the original ECCT [2], its improved variant CrossMPT [9], the
foundational FECCT model [10], and two recent advancements: AECCT [25], which is an accelerated
version of ECCT that optimizes inference speed via sparse attention and early stopping, while retaining
the Transformer’s global context and ECCM [26] which employs a hybrid Mamba-Transformer decoder
leveraging mamba’s efficient sequential modeling to further improve inference speed and also introduces
a new layer-wise masking strategy to improve performance. All the results presented for these models
are taken as is from the respective published papers.

Essentially, all models, except for FECCT, use the same number of parameters (1.2M). Our
results clearly demonstrate the importance of data-centric training: without modifying the
architecture, our model outperforms all baselines simply by optimizing the training data.
This underscores the power of better data over architectural complexity in neural decoding.

That said, SBND is neither fully accomplished nor one-fits-all solution yet. Consider, for example,
the (96, 48, dmin = 10) code from [27], which is a reasonably strong, structured LDPC code. It has
88 VNs with degree 3, 8 VNs with degree 4, 40 CNs with degree 6 and 8 CNs with degree 7. By
training a 39M parameter GRU-based model on 64M ML error patterns with data augmentation, we
achieve only marginal improvement over BP with 100 iterations. Even with inference-time techniques,
the resulting FER remains roughly 1 dB away from the MLD benchmark at an error rate of 10−4, as
shown in Fig. 1.28. This underscores a broader point: while SBND shows significant promise as
a model-free approach to achieve near-MLD performance for short block codes, its full
potential depends on continued collaboration between deep learning and coding theory.
Coding theory benefits from learning-based generalization, optimization, and flexibility. In turn, deep
learning architectures and training recipes need to be adapted to respect the algebraic
structure and constraints of coding problems. Addressing the remaining limitations of SBND,
such as model scalability and architectural efficiency, will require deeper integration of insights from

Page 36 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

1 2 3 4 5 6

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

Flooding BP 20 it

Flooding BP 100 itr

GRU 39M

GRU 39M + TTA (8 perms)

GRU 39M + IEC (5 itr)

MLD

Figure 1.28: FER performance measured with and without inference time enhancements on
TUKL(96, 48, 10) and compared to the flooding BP decoder.

both fields. This collaboration is not only fruitful, but necessary to close the remaining gap between
neural decoders and optimal decoding.

©AI4CODE, October 2025 Page 37 of (104)

D3.2: Improved Learning-Based Decoders (Final)

2 Learning to Improve BP Decoding of Short LDPC Codes

2.1 Motivation
Binary LDPC codes have found numerous applications in digital storage and communication systems,
including the latest 5G New Radio. The standard message-passing decoder for LDPC codes is the
Belief Propagation (BP) algorithm. Using BP, well-designed long LDPC codes can approach channel
capacity within a fraction of decibels, with affordable decoding complexity, only linear in the block
length. However, as the block length decreases, BP decoding exhibits an increasing performance gap
compared to the optimal Maximum-Likelihood decoder (MLD).

Let us illustrate the problem on a specific code. Consider the (128, 64, 14) rate-1/2 binary LDPC
code recommended by the CCSDS for deep-space telecommand links. This quasi-cyclic left-irregular
LDPC code is often used for benchmarking short LDPC decoding algorithms in the literature. Its
Tanner graph has 64 variables of degree 3 and 64 variables of degree 5. All check nodes have constant
degree 8. Its performance under best-effort BP decoding (maximum of 200 iterations) and MLD
are plotted in Figure 2.1. For reference purpose, we have also included BP performance with 100
iterations, as well as Polyanskiy’s refined normal approximation of the performance achievable by the
best possible (128, 64) code [28]. By comparing the MLD performance to this bound, one can see
that the short CCSDS LDPC code is not inherently bad, except perhaps for its minimum distance of
only 14, which penalizes the high-SNR performance. On the other hand, BP decoding is. For this
particular code, the gap to MLD is about 1.5 dB at an FER of 10−5. Clearly, using more iterations
does not help. A similar trend is observed with other short LDPC codes of various code rates.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

F
E

R

CCSDS (128,64,14) QC-LDPC

BP I=100
BP I=200
ML
RNA

Figure 2.1: Performance of the (128, 64) short LDPC code under BP and ML decoding, and comparison
with the refined normal approximation (RNA) on the performance of optimal (128, 64) codes

Page 38 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

There exists a variety of techniques for improving the decoding of short LDPC codes. In particular,
LDPC codes can take advantage of any near-MLD decoder devised for generic linear codes, albeit not
necessarily in the most efficient manner. Ordered-Statistics Decoding (OSD) and its many variants is
one of the most powerful approaches among this class. The main problem with OSD is its variable
decoding latency with high worst-case complexity, due to a number of re-encoding operations that
needs to grow exponentially with the minimum distance when the goal is to match MLD performance.
Also, the Gaussian elimination required to construct the most reliable information set for each new
received word can prove challenging for the implementation of high-throughput hardware decoders.
As a result a hybrid approach is usually preferred, wherein BP decoding is augmented with a low-order
OSD post-processor only invoked in case BP decoding fails [29]. The use of learning to improve OSD
post-processing will be investigated in Section 3.

We follow a different path in the present study. Driven by the desire to stick with a single
decoding algorithm and keep complexity at its lowest, we consider an alternative approach in which
some perturbation is applied to the input of the BP decoder whenever it fails, in an attempt to correct
some of the channel errors. BP decoding is then restarted for another round. The overall process is
repeated several times until a codeword is found or a maximum number of perturbations has been
tested. Hereafter, we will adopt the terminology of [30] and refer to this general class of algorithms
as multiple-round BP (MRBP) decoders. Our interest in this kind of decoders arose from three key
observations gathered from experimental evidence:

1. BP decoding seldom makes errors. On the other hand it fails a lot. Consider again the simulated
BP performance of the (128, 64) CCSDS code shown in Figure 2.1. A minimum of 100 decoding
errors were measured at each SNR value. Analysis of the simulation logs reveals that all recorded
decoding errors over the whole SNR range were in fact decoding failures. In each case BP failed
to converge towards a valid codeword within the prescribed number of iterations. That also
means that each time BP found a codeword, it was the transmitted codeword. It may happen
that BP converges towards an erroneous codeword, especially at very low SNR. However this
remains relatively rare, at least with strong codes, and in such cases, most of the time BP
commits an MLD error, i.e. an MLD decoder would make the same mistake and decode to the
same, incorrect codeword.

2. When BP fails, most of the time, perturbing a single bit in input is enough to make it succeed.
This observation is best understood with the help of Figure 2.2. This figure was obtained by
collecting 105 noisy received vectors that made 20 iterations of BP decoding of the (128, 64)
CCSDS code fail at an SNR of 4.5 dB. For each of them, we separately flip and saturate1 the
channel LLR of each code bit, leaving the other received bits as is, and then restart another
round of BP decoding on the perturbed input. Figure 2.2 shows the empirical distribution of
the number of bit perturbations per received vector that led to a decoding success. One can see
that for about 75% of the input vectors that cause failure, at least 5 distinct bit flips can lead
to a decoding success, the average value being close to 8. It’s only for a very few input vectors,
less than 1000 out of 105, that perturbing a single bit was found not sufficient to recover from
the initial decoding failure.

3. The bits to perturb in order to make BP decoding succeed may not be the ones we could think
of at first. Intuition suggests to prioritise flipping the received bits with smallest channel LLR
magnitude, as they are the most-likely to be in error. But experimental evidence reveals that,
most often, BP decoding will have no serious difficulty with such obvious errors, unless the
received word contains so many of them that the decoder gets overwhelmed. In light of this
observation, we have carried out the following experiment with the (128, 64) CCSDS LDPC
code. We first run 200 iterations of standard BP decoding. If it fails, we assume a genie decoder

1Here and thereafter, by saturating an LLR value, we mean setting its magnitude to ∞ (or to the maximum value
allowed by the quantization scheme) and propagating this infinite magnitude in all calculations involving the LLR value,
as is done with frozen bits in the decoding of polar codes.

©AI4CODE, October 2025 Page 39 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Figure 2.2: Empirical distribution of the number of single bit flips per codeword that can make BP
decoding of the (128,64) CCSDS code recover from a decoding failure, at an SNR value of 4.5 dB.

that can tell us exactly which bits are erroneous in the received word. We rank those erroneous
bits in order of decreasing channel LLR magnitude, from most-reliable to least-reliable, create
F modified received words in which we separately flip and saturate each of the F most-reliable
bits in error (MRBE), and then run another round of 200 iterations of BP decoding on each of
those F modified received words. This may result in up to F distinct codewords, among which
we select the most-likely one as the final decision. The rationale behind this experiment is that
we expect the decoder to be more seriously affected by the malicious errors located in the bits it
trusts most. The performance of this genie-aided BP decoder is shown in Figure 2.3, for F = 1
and F = 5 bit flips, respectively. Interestingly, we observe that as few as 5 single-bit flips could
be sufficient to reduce the gap to MLD by half, provided the bits to flip are properly selected.
Furthermore, these 5 additional BP decoding attempts can be carried out in parallel. Coming
closer to MLD performance requires flipping more than one bit at a time.

These observations suggest that, with the proper choice of input perturbations, MRBP could
approach MLD in a computationally-efficient manner. In the following, we first describe the principle
of MRBP decoding in more details. Then we investigate how to augment MRBP with learning
capabilities so as to arrive at a smarter multi-round BP decoder.

2.2 Multi-Round Belief Propagation decoding

2.2.1 General framework

The general framework for MRBP decoding is depicted in Figure 2.4. In the following, we assume
the use of an (n, k) binary LDPC code, and denote by L = (L1, . . . , Ln) the channel LLR vector
provided at the BP decoder input. For BPSK transmission over AWGN of variance σ2

w = N0/2, we
have Li = 2

σ2
w
ri, where ri is the i-th sample collected at the matched-filter output for some received

Page 40 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

F
E

R

CCSDS (128,64,14) QC-LDPC

BP I=200
BP I=200+200 with MRBE Genie Flip F=1
BP I=200+200 with MRBE Genie Flip F=5
ML

Figure 2.3: Performance of genie-aided BP decoding of the (128, 64) CCSDS LDPC code, where we
reprocess the F most-reliable bits received in error (MRBE). By reprocessing, we mean flipping and
saturating one of those F bits, leaving all other bits as received, and re-decoding the perturbed vector

word r. An initial round of standard BP decoding is first performed for I0 iterations, where I0 is
typically in the range 50 − 100. It is only when this first round fails to decode that we enter the
MRBP decoding procedure of Figure 2.4. Detection of BP decoding failure is preferably based on the
CRC checksum if payload data includes one, or on the LDPC code syndrome otherwise.

Our description of MRBP closely follows the general description given in [30]. In its most simple
form, the first step of MRBP decoding consists in ranking the variable nodes (VN) in the Tanner
graph from least reliable to most reliable, according to some custom reliability measure that attempts
to identify the bits that are causing a problem to the BP decoder. This ranking is then used to
select a subset of low-reliability VNs to perturb. This is the VN selection step, and the resulting
subset of VNs will be referred to as the perturbation set. The perturbation set can be static or
dynamic, depending on whether this set can be computed once and for all from the result of the
initial BP decoding attempt, or can evolve with subsequent decoding rounds. A new perturbation
pattern is then selected and applied to the input LLR vector L. A perturbation pattern is defined by
a set of bits to perturb within the perturbation set, together with an action to apply on those bits.
Perturbations can be deterministic or random. Deterministic perturbations modify the input LLR
vector in a deterministic manner. Example of deterministic perturbations include erasing, flipping
the sign, and/or saturating the value of selected channel LLRs. Random perturbations consist in
introducing some form of random noise into the received word. Example of random perturbation
include random sign flips (multiplicative noise) of channel LLRs, or addition of WGN (additive noise).
Perturbation of the channel LLR vector L produces a modified input vector L′ onto which a new BP
decoding attempt is performed, using a maximum of I1 ≤ I0 iterations. Typical values for I1 are
in the range 10 − 50. Here we can either resume decoding from the previous failure, using now L′

for the channel LLR values, or reinitialize all messages in the graph and start decoding anew on the
modified input L′. Restarting the decoding can save memory, whereas resuming decoding allows the
VN reliability and set of perturbation patterns to be adapted from one decoding round to the other. If

©AI4CODE, October 2025 Page 41 of (104)

D3.2: Improved Learning-Based Decoders (Final)

> SELECT TANNER
GRAPH

↓
> CONSTRUCT PERTURBATION SET

~

SELECT NEW PERTURBATION

V

PERTUB L => NEW INPUT L'

~

DECODE L'

~

VALID CODEWORD ?↑
No

EARLY STOP!

No vYES

STORE cu

V

YES

~ -
No

No ALL PERTURBATIONS

TESTED ?

YES
~

-
ALL GRAPUS TESTLD ?

YES
RETORN MOST-LIKELY

[
CW IN THE LiSi

Figure 2.4: Block diagram of a generic multi-round BP decoder

the new decoding attempt fails, the process is repeated with a new perturbation. As for the scheduling
of the decoding rounds, we have the choice between testing different perturbation patterns one after
the other (serial scheduling), or in parallel (parallel scheduling). In case decoding succeeds at some
round, we can choose to terminate the decoding early and return this codeword. Another option is
to store this candidate in a list, and continue with other perturbations, for some total number T of
decoding rounds. This may result in up to T distinct candidate codewords, often much less. The
decoder decision at the end of the decoding process is then given by the most-likely codeword within
this list. Early-stopping on the first codeword can save decoding power, whereas list-decoding most
often results in better performance. In case of early-stopping, the ordering of perturbation patterns
may need to be optimized for fastest convergence and best performance. Note also that a parallel
decoding schedule with a static perturbation set naturally calls for the list-decoding strategy, and
minimizes decoding latency. On the other hand, a sequential schedule with early-stop minimizes
hardware resources. As depicted in dashed lines in Figure 2.4, the overall process may be repeated on
multiple Tanner graph representations of the code, or on different automorphisms (permutations that
preserve the code) of the received word, to benefit from decoder diversity.

Page 42 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

The first instance of MRBP decoder we are aware of is the Augmented BP decoder (ABP) in-
troduced in [31]. Different VN selection rules are proposed and discussed, that all use as primary
reliability measure the number of unsatisfied checks a VN is connected to. The perturbation set is
formed by the J least reliable bits under the selected reliability measure. It is constructed either in
a static or dynamic way, depending on whether decoding is continued or restarted after each pertur-
bation. Both options are discussed and compared in the paper. A total of T =

∑J
i=1 2j = 2(2J − 1)

perturbations pattern is constructed by successively considering all possible combinations of ±∞ for
the channel LLR values within the first j bits of the perturbation set, where j = 1, ..., J . The T
perturbation patterns are organized in a binary tree of depth J , and different strategies for exploring
this tree are discussed (breadth-first vs depth-first), corresponding to the parallel/sequential decod-
ing schedules discussed above. This very comprehensive paper also discusses and compares the two
different termination strategies (algorithm A = list decoding vs algorithm B = early-stop on first
codeword). The Saturated Min-Sum (SMS) decoder of [32] can be regarded as another form of MRBP
decoder, if we replace the MS decoder by a BP decoder. Here, the perturbation set consists of the J
received bits of smallest channel LLR magnitude, and T = 2J perturbation patterns are constructed
by testing all possible combination of saturated LLR values within the perturbation set. All perturba-
tions are decoded in parallel, with a list-decoding strategy. The SMS decoder is simpler to implement
in hardware than the ABP decoder, but has inferior performance for the same total number T of
decoding rounds. In [33], an oscillation-based ABP (OABP) decoder is proposed that departs from
the original ABP decoder in two aspects. First, an improved VN selection rule is used to construct a
more relevant perturbation set, that uses the number of sign changes (oscillations) of extrinsic mes-
sages from VNs to CNs along iterations as VN reliability measure. This new rule is shown to improve
the performance of the ABP decoder, especially with irregular codes, and also make it applicable to
punctured codes. Also, the implementation of ABP is made more efficient by smarter exploration and
pruning of the perturbation patterns tree. The Enhanced Quasi-ML (EQML) decoder proposed later
on in [34] advocates nothing more than the same two ideas. More recently, another form of MRBP
decoder was introduced in [30]. This MRBP decoder with impulsive perturbation (MRBP-IP) differs
from ABP and OABP in the VN selection rule, that counts the number of sign mismatches between
posterior LLRs and extrinsic messages from VNs to CNs along iterations. This new rule is shown to
(slightly) outperform the one used by OABP. But more importantly, MRBP-IP departs from (O)ABP
in the way the perturbation patterns are constructed. (O)ABP concentrates its efforts on a relatively
small number J of low-reliability bits, and tests all possible combinations of saturated values for the
channel LLR values within this subset in an incremental manner. In contrast, MRBP-IP considers
an enlarged perturbation set that include the same low-reliability bits as (O)ABP as well as others,
of low-to-medium reliability. The kind of perturbation applied, namely impulses, also differs. Here,
channel LLRs are either flipped and saturated, or left unchanged, but never saturated while preserving
the sign. In other words, we always attempt to correct some of the received bits, and never reinforce
their value. In addition, impulses are applied in order of increasing Hamming weight: all single-bit
impulses within the perturbation set first, then all combinations of two-bit impulses, etc, until reach-
ing the predefined total number T of perturbation patterns. Lexicographic ordering is applied among
impulses of same Hamming weight. In case the perturbation set is formed of the τ least reliable bits
for the selected VN reliability measure, and assuming that we test all impulse of Hamming weight ≤
some integer wmax, then T =

∑wmax
w=1

(τ
w

)
. Compared to (O)ABP, MRBP-IP offers the possibility to

flip bits ranked as more reliable for the same total number T of decoding rounds. On the other hand,
(O)ABP considers perturbation patterns of larger maximum Hamming weight wmax.

As made clear by the previous discussion, MRBP decoders have many parameters, and thus there
are as many different MRBP decoders as we can think of. However they all share some common traits.
In particular, a comparative analysis of the MRBP decoders proposed in the literature suggests that
the performance of this general class of algorithms is primarily governed by

• the VN selection rule and associated VN reliability measure ;

• the kind of perturbation applied (pattern and action) ;

©AI4CODE, October 2025 Page 43 of (104)

D3.2: Improved Learning-Based Decoders (Final)

• the total number T of perturbation patterns considered

How to organize the overall decoding, namely the scheduling of the decoding rounds and the choice
of the stop criterion, is of utmost relevance for hardware implementation, but appears to be of less
importance for the performance. Simulation results for the (155, 64, 20) Tanner code in [31] show a
0.2 dB advantage for the list-decoding strategy over an early-stop on the first codeword, for the same
total T of decoding rounds. In light of this observation, we have chosen to focus exclusively on a
list-decoding strategy with a static perturbation set and parallel decoding of the perturbation patterns.
This approach has the additional advantage of having fixed, minimal decoding latency.

In the next sub-section, we summarize the main conclusions drawn from our investigations on how
to choose to bits to perturb, and on how to perturb them, for maximal performance. We also give
some simulation results to illustrate the typical complexity versus performance tradeoff that can be
achieved by MRBP decoders.

2.2.2 How to select the bits to perturb

The VN reliability measure used to rank and select the suspicious VNs that will form the perturbation
set clearly plays a central role in the performance of MRBP decoders. Based on our review of the
MRBP decoders proposed in the literature, we have identified 7 different reliability metrics that can
be used to identify VNs that cause problem to the BP decoder:

1. the channel LLR magnitude

2. the APP magnitude

3. the number of unsatisfied checks the VN is connected to

4. the number of sign changes of the APP along the iterations

5. the number of sign changes of the outgoing extrinsic messages along the iterations

6. the number of sign mismatches between APP and outgoing extrinsic messages along the iterations

7. the number of sign mismatches between incoming and outgoing extrinsic messages along the
iterations

The first 6 metrics are taken from the literature, whereas the last one is a contribution of this work.
In order to formally define each reliability measure, we need to introduce some notation. Consider
some VN of index v in the Tanner graph. Denote by Lv the corresponding channel LLR (input
message), and by M(v) the set of neighboring check nodes (CN) connected to this VN. Let µ(i)

c→v

be the incoming extrinsic message received from some CN c ∈ M(v) at iteration i, and λ
(i)
v be the

corresponding log-APP for the VN v, calculated as:

λ(i)
v = Lv +

∑
c∈M(v)

µ(i)
c→v

The outgoing extrinsic message sent back to check node c at iteration i is then given by:

µ(i)
v→c = λ(i)

v − µ(i)
c→v

Hereafter we will assume that non-negative (resp. negative) LLRs and messages correspond to a logical
0 (resp. logical 1). Equipped with these notations and conventions, we are now in position to describe
how is calculated each of the aforementioned reliability metric.

Page 44 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Channel LLR magnitude (iLLRm)

The channel LLR magnitude for VN v is simply

iLLRm(v) = |Lv|

The higher the metric, the more reliable the bit. There is a direct relationship between this metric
and the probability that a bit is erroneous at the decoder input. On the other hand, this metric is
absolutely not related in any manner to the current decoder state. Also it cannot be used with codes
with punctured nodes. This metric does not account for irregularity in the VN degrees. The channel
LLR magnitude is the reliability measure used by the SMS decoder [32].

APP magnitude (APPm)

The APP magnitude for VN v is measured at the final iteration I0, when the initial BP decoding
attempt fails, and reads

APPm(v) = |λ(I0)
v |

As for the previous metric, the higher the metric, the more reliable the bit, in principle. There is
a direct relationship between this metric and the probability that a bit is erroneous at the decoder
output. This metric does not account for code irregularity. This is the metric commonly used to select
the unreliable VNs to reprocess when combining BP with OSD post-processing [29].

Number of unsatisfied checks (nUC)

This metric lies at the root of all the VN selection rules devised for the original ABP decoder in
[31]. It consists in counting, at the final iteration I0, how many parity-check equations fail among the
neighbors of the VN. Formally,

nUC(v) =
∑

c∈M(v)
I

 ∏
v′∈N (c)

sign(µ(I0)
v→c) = −1


where I(A) is the indicator function for event A, and where N (c) denote the set of VNs connected
to CN c. The lower this metric, the more reliable the bit. This metric tacitly accounts for code
irregularity. It is often the case, especially for regular codes, that many VN have the same number of
unsatisfied checks. The ABP decoder uses the channel LLR magnitude as auxiliary reliability measure
to break ties. In order to break ties based solely on the messages received from the CNs, we chose to
rank VNs of equal nUC metric by order of increasing CN reliability, where the CN reliability of a VN
is defined as the minimum magnitude among the messages received from its neighbors. Formally, if v
and v′ are two VNs such that nUC(v) = nUC(v′), v will be considered as less reliable than v′ iff

min
c∈M(v)

|µ(I0)
c→v| < min

c′∈M(v′)
|µ(I0)

c′→v′ |

Number of sign changes on the APP (nSCA)

This metric was introduced in [35] as a way to assess how oscillating a VN can be. Indeed, VNs that
change sign frequently are likely to be part of oscillating, periodic or aperiodic trapping sets. The
nSCA reliability measure counts the number of times the APP changed sign since the first iteration:

nSCA(v) =
I0∑

i=1
I
(
sign

(
λ(i)

v

)
̸= sign

(
λ(i−1)

v

))
The lower this metric, the more reliable the bit. This metric does not account for irregularity. It can
be used with punctured codes.

©AI4CODE, October 2025 Page 45 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Number of sign changes on the extrinsic messages (nSCE)

This reliability measure is advocated in [33] as well as in [34] as a replacement to the nSCA metric,
that better reflects the confidence to place in a VN and also naturally accounts for its degree, in the
case of irregular codes. This metric tracks the oscillations on outgoing extrinsic messages on each edge
from one iteration to the other:

nSCE(v) =
I0∑

i=1

∑
c∈M(v)

I
(
sign

(
µ(i)

v→c

)
̸= sign

(
µ(i−1)

v→c

))

The lower the metric, the more reliable the bit. Tracking the dynamic of sign changes on the extrinsic
messages over iterations makes it compatible with punctured nodes. However it cannot be used with
codes having degree-1 VNs as the outgoing message is always the same and equal to the channel LLR.

Number of sign mismatches between APP and extrinsic messages (nSMEA)

This last metric was proposed in [30] as an alternative to nSCE for impulse-like perturbations. It
consists in tracking the total number of sign mismatches between the APP and all outgoing extrinsic
messages over all iterations:

nSMEA(v) =
I0∑

i=1

∑
c∈M(v)

I
(
sign

(
µ(i)

v→c

)
̸= sign

(
λ(i)

v

))

The lower this metric, the more reliable the bit. This metric takes the VN degree into account.

Number of sign mismatches between incoming and outgoing extrinsic messages (nSME)

We came up with this last metric in an attempt to combine the nSCE and nSMEA reliability measures
in a way that only involves the extrinsic messages. It consists in tracking the total number of sign
mismatches between the incoming and outgoing extrinsic message on each edge and over all iterations:

nSME(v) =
I0∑

i=1

∑
c∈M(v)

I
(
sign

(
µ(i)

v→c

)
̸= sign

(
µ(i)

c→v

))

The lower this metric, the more reliable the bit. This metric takes the VN degree into account. It can
be used with punctured nodes as well as with codes with degree-1 VNs.

Comparison of reliability measures

Simulation results given for the MRBP decoders found in the literature not only use different VN
selection rules, from the above list, but also different forms of perturbation patterns, and different
overall decoding logic. In addition, decoders like ABP do not use a single metric but may combine
two of them. This makes it difficult to assess whether one VN reliability measure is really better than
the others at predicting the bits that hinder the convergence of the BP algorithm. To circumvent the
problem and provide a tentative answer to this question, we have evaluated the first 6 candidate metrics
in the same simulation conditions. This benchmark does not include the nSME reliability measure as
we came up with it after this study was realized. The code considered was the (155, 64, 20) LDPC
code constructed by R. M. Tanner. This is a (3, 5)-regular quasi-cyclic code whose properties and
performance are well-known in the literature. The different reliability measures have been evaluated
on the same dataset of 50000 noisy received words, generated at a SNR value of 3 dB. The recorded
noisy frames were selected so as to make the initial BP decoding attempt fail after I0 = 50 iterations.
Upon failure, the 155 bits were ranked according to the selected reliability measure, from least to most
reliable. For each reliability measure, we have counted the number of times BP decoding succeeds
after flipping and saturating each of the 155 bits, as a function of its rank. I1 = 50 iterations were

Page 46 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

used for the second decoding attempt in all cases. The results are shown in Figure 2.5. In all cases we
observe that the probability of decoding success decreases with the rank, as the bit reliability increases.
This confirms that all these metrics are relevant at predicting which bits may cause trouble to the
BP algorithm. However, not all of them are equally good at this. The oscillation-based nSCE and
nSMEA criteria stand out on par with each other, with a probability of correct decoding of 26.5% after
a single-bit flip for both. One may legitimately wonder how does the 7th metric (nSME) compare to
the nSCE and nSMEA criteria. Simulation results to be presented in Subsection 2.2.4 will provide an
answer to this question, and will also illustrate how the probability of decoding success evaluated here
can link with FER performance. The iLLRm metric has the worst prediction. This is not surprising
as it is solely based on information at the decoder input, that tells nothing about what may have
gone wrong later on during the iterative decoding process. This statistical study also reveals that all
these VN reliability measures are rather weak when taken individually. Hence the need to test many
perturbation patterns in order to approach MLD, as we shall see later in Subsection 2.2.4.

2.2.3 How to perturb the input

Once the perturbation set is constructed, then comes the question of what kind of perturbation to
apply to those low-reliability VNs. As of today, we haven’t seen any evidence showing that random
perturbations can fundamentally achieve better performance than well-chosen deterministic pertur-
bations. In addition, random perturbation usually exhibit a much larger variability in performance.
Thus, we will only consider deterministic perturbations hereafter. The main types of deterministic
perturbation that can be applied to the decoder soft-input are the following:

• Keep the sign and saturate the channel LLR

• Erase the channel LLR

• Flip the sign of the channel LLR

• Flip the sign and saturate the channel LLR

Whereas the first perturbation reinforces the logical value of a received bit, the last two perturbations
attempt to correct errors in the received message, either in a soft or hard manner. The erasure option
leave it to the decoder to decide what’s best for the bit. Since we enter the MRBP decoding procedure
after a first decoding failure, it is likely that there is more to gain from attempting to correct errors
in the received word than from giving a higher confidence to certain bits. This intuition is supported
by the third observation we made in Section 2.1, as well as by the analysis in [31] and [33] which show
that it is beneficial to first test the hypothesis of an incorrect sign of the message, before considering
the possibility that the sign is correct. Therefore we discard the first perturbation, and have to
choose between erasing, flipping, or flipping and saturating the channel LLRs of the bits within the
perturbation set. Simulations have been conducted on the (128, 64) CCSDS LDPC code, in order to
compare the three options. I0 = 100 iterations were used for the initial BP decoding, and I1 = 50 for
the subsequent rounds. VN selection used the nSMEA metric from [30] (see the previous sub-section).
The perturbation set was made of the 64 least-reliable bits, and a single-bit perturbation was applied
to each bit in the set. The results are depicted in Figure 2.6. They clearly demonstrate that flipping
and saturating the channel LLRs is the most effective perturbation among the three.

©AI4CODE, October 2025 Page 47 of (104)

D3.2: Improved Learning-Based Decoders (Final)

13/06/2023

40

Channel LLR APP Magnitude

Probability of success when (ipping each bit

0 50 100 150
VNs ranked from least to most reliable

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss16.564%

Probability of success when (ipping each bit

0 50 100 150
VNs ranked from least to most reliable

0

0.05

0.1

0.15

0.2

0.25

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss20.298%

Results of experimental study on Channel LLR and APP Magnitude Criteria

(a) Left: channel LLR magnitude (iLLRm), right: APP magnitude (APPm)

13/06/2023

41

Number of
unsatisfied Checks

Number of sign
changes on APP

Probability of success when (ipping each bit

0 50 100 150
VNs ranked from least to most reliable

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss18.574%

Probability of success when (ipping each bit

0 50 100 150
VNs ranked from least to most reliable

0

0.05

0.1

0.15

0.2

0.25

0.3

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

26.584%

Results of experimental study on number of unsatified checks and number of sign
changes on APP Criteria

(b) Left: number of unsatisfied checks (nUC), right: number of sign changes on APP (nSCA)

13/06/2023

42

Number of sign
changes on extrinsic

Number of Sign mismatch
between extrinsic and APP

Probability of success when (ipping each bit

0 50 100 150
VNs ranked from least to most reliable

0

0.05

0.1

0.15

0.2

0.25

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss24.4%

Probability of success when (ipping each bit

0 50 100 150
VNs ranked from least to most reliable

0

0.05

0.1

0.15

0.2

0.25

0.3

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss26.518%

Results of experimental study on number of sign changes on extrinsic and number
of Sign mismatch between extrinsic and APP

(c) Left: number of sign changes on the extrinsic (nSCE), right: number of sign mismatches between extrinsic and
APP (nSMEA)

Figure 2.5: How good are the various VN reliability measures at predicting which VN to flip to make
BP succeed: empirical probability of decoding success after flipping and saturating a single bit, as a
function of the rank of the bit, for the (155, 64) Tanner LDPC code at an SNR of 3 dB

Page 48 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -4

10 -3

10 -2

10 -1

100

F
E

R

CCSDS (128,64,14) QC-LDPC

ML Sim

BP I=100 it
MRBP I=100+50: Erase the 64 LRBs
MRBP I=100+50: Flip the 64 LRBs
MRBP I=100+50: Flip & Saturate the 64 LRBs

Figure 2.6: Performance comparison between three different kind of perturbations in MRBP decoding
of the (128, 64) CCSDS LDPC code based on the nSMEA reliability measure: 1) erase, 2) flip, or 3)
flip and saturate each of the 64 least-reliable bits

As for the format of the perturbation patterns, the analysis and simulation results presented in
[30] suggest that it might be more advantageous to consider patterns with low Hamming weight but
that could involve bits with low to medium reliability, compared to the (O)ABP or SMS strategies
that attempt to correct more errors but within a smaller subset of low-reliability bits. For a given
total number T of perturbation patterns, the OSD-like generation method of [30] appears to give
more freedom in the choice of patterns to test than the Chase-like (O)ABP strategy. Furthermore the
third observation in Section 2.1 suggests that approaching MLD may not necessarily require flipping
a large number of bits simultaneously. Accordingly we will stick to the method of [30] for building
our perturbation patterns in the following. Yet we note that, to date, there is no clue nor general
hindsight about how to balance the size of the perturbation set (maximum rank at which a bit can be
flipped) and the maximum hamming weight of the perturbation pattern (maximum number of bits that
can be flipped simultaneously) for best performance at fixed total number of perturbation patterns.

2.2.4 Performance vs complexity

The parameters in MRBP decoding can easily be chosen to meet a wide variety of complexity versus
performance tradeoffs. In this subsection, we present simulation results obtained with different codes
and decoder configurations in order to highlight the strengths and weaknesses of this class of decoding
algorithms.

Let us first consider a regular LDPC code, namely the (155, 64, 20) Tanner code. Figure 2.7 gathers
the performance obtained with the following decoders:

• the optimal MLD, which serves as a reference for the other decoders

©AI4CODE, October 2025 Page 49 of (104)

D3.2: Improved Learning-Based Decoders (Final)

• a genie-aided two-round BP decoder which flips and saturate the most-reliable bit received in
error in case of decoding failure (T = 1)

• the OABP decoder of [33] with J = 6 decoding layers, I0 = 100 iterations for the first decoding
attempt, I1 = 10 iterations for each additional round ; J = 6 layers corresponds to T =
2(26 − 1) = 124 perburbations tested in the worst case, this can be considered as a moderate-
complexity decoder

• the ABP decoder of [31] with J = 11 decoding layers, I0 = 100 iterations for the first decoding
attempt, I1 = 10 iterations for each additional round, and a list-decoding strategy (Alg. A) ;
J = 11 layers corresponds to T = 2(211 − 1) = 4092 perburbations tested in the worst case, this
is a best-effort decoder

• the MRBP-IP decoder of [30] with a perturbation set formed of the 64 least-reliable bits for the
nSMEA criterion, T = 64 single-bit perturbations applied on this set, I0 = 100 iterations for the
first decoding attempt, I1 = 50 iterations for each additional round ; this can be considered as
a moderate-complexity decoder

One can see that all MRBP decoders achieve notable performance gains compared to the standard
BP decoder. Interestingly, the MRBP-IP decoder of [30] is able to match the performance of the
more complex OABP decoder with twice as less decoding rounds, owing to the use of impulse-like
perturbation patterns that flip less bits but of higher reliability. We have observed a similar trend on
other codes. The original ABP decoder with up to 4092 perturbations tested (up to 11 simultaneous
bit flips) is only 0.2 dB away from MLD at an FER=10−4. This demonstrates that MRBP decoders
are capable of approaching MLD in practice, albeit at the cost of a very large number of perturbation
patterns to test. Part of the reason for this might be that the VN reliability measures used so far are
not sufficiently accurate at predicting the bits to perturb.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

F
E

R

Tanner (155,64,20) QC-LDPC

ML Sim

BP I=100
BP + Genie Flip on MRBE I=100+50
OABP J=6 layers (T=124) I=100+10
ABP Alg. A J=11 layers (T=4092) I=100+10
MRBP-IP + nSMEA I=100+50 T=64

Figure 2.7: Performance of various MRBP decoders for the (155, 64) Tanner LDPC code

Page 50 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Consider next the (128, 64, 14) left-irregular code from the CCSDS TC recommendations. Only
MRBP-IP decoding have been investigated for this code, since the study conducted on the Tanner
code has shown that MRBP-IP has performance at least as good as (O)ABP decoding. We first
compare in Figure 2.8 the performance obtained with the nSCE, nSMEA, and nSME VN reliability
measures. The same decoder setting was used for the three simulations: I0 = 100 iterations for
the first round, followed by I1 = 50 additional iterations for the next rounds. The perturbation
set consisted of the 64 least-reliable bits, and the set of perturbation patterns was composed of all
single-bit perturbations within the perturbation set. All perturbed input were decoded in parallel,
with the list-decoding strategy. One can see that, on this particular code at least, all three VN
reliability measures have essentially the same performance, with perhaps a tiny advantage for the
nMSE metric, albeit negligible here. Sticking with the nSMEA metric as VN reliability measure, we
then have investigated how the performance evolves with the total number of perturbation patterns.
Specifically, we have compared the performance obtained by testing all single bit flips within the 64
least-reliable bits (wmax = 1) to the performance obtained by testing all single and double bit flips
(wmax = 2) within the same perturbation set. In the first case we have a total T of 64 perturbation
patterns, against 64 +

(64
2
)

= 2080 patterns for the second configuration. The simulation results are
plotted in Figure 2.9. Even with 2080 perturbation patterns, the performance is still approximately
0.5 dB away from MLD at an FER of 10−4, suggesting that considerable efforts might be required to
approach MLD of this code in this manner.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -4

10 -3

10 -2

10 -1

100

F
E

R

CCSDS (128,64,14) QC-LDPC

ML Sim

BP I=100 it
MRBP-nSCE I=100+50 T=64
MRBP-nSMEA I=100+50 T=64
MRBP-nSME I=100+50 T=64

Figure 2.8: Performance comparison between the nSCE, nSMEA and nSME VN reliability measure for
MRBP decoding of the (128, 64) CCSDS LDPC code with a total of T = 64 single-bit perturbations

©AI4CODE, October 2025 Page 51 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10 -4

10 -3

10 -2

10 -1

100

F
E

R

CCSDS (128,64,14) QC-LDPC

ML Sim

BP I=100
MRBP-IP+nSMEA I=100+50 w max=1 T=64

MRBP-IP+nSMEA I=100+50 w max=2 T=2080

Figure 2.9: Performance of MRBP-IP decoding of the (128, 64) CCSDS LDPC code as a function of
the total number T of perturbation patterns, using the nSMEA reliability measure

2.3 Beyond MRBP: Learned MRBP

We have seen that the MRBP decoders proposed in the literature can practically approach the MLD
performance of short LDPC codes, but that this may require testing an unreasonably large number
of perturbation patterns. We have also shown evidence which suggest that it might be possible to
achieve better performance than the MRBP decoders of the literature, or comparable performance
but at a much lower computational cost, provided the perturbation patterns are chosen very wisely
(ideally pointed out by some genie). Part of the reason for this is that the VN selection rules proposed
so far are quite ad-hoc, and prove insufficient capability in guessing correctly which are the bits that
hinder the BP algorithm. In this Section, we reflect on how machine learning can be used to arrive
at a smarter learned MRBP decoder which would need less perturbation patterns to reach the same
performance level than existing expert rules.

To the best of our knowledge, there appears to be little work on this subject in the literature. [36]
introduces a syndrome-based decoder which uses reinforcement learning with a proper reward function
to guess the received bits that need to be flipped in order to achieve MLD. The proposed algorithm
is not specific to LDPC codes, but targets MLD of generic binary linear codes, which is a more much
difficult problem in general. All simulation results presented in [36] show at least a 1 dB gap to MLD.
More relevant to the present work is [37], which describes a neural-aided MRBP-IP decoder in which
a neural network (NN) is used to predict the VN to perturb in place of the expert VN selection rule,
directly from the channel LLRs. Only single-bit perturbations are considered. Simulation results show
that the proposed scheme can slightly outperform standard MRBP-IP for certain LDPC codes with
special structure (the Raptor-like codes of 5G NR). For other codes such as the (128, 64) CCSDS LDPC
code, some degradation is observed, leaving much room for improvement. The NN-aided MRBP-IP

Page 52 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

approach of [37] has been the baseline on which we have built our investigations.
Two different approaches have been explored and will be outlined in the next two sub-sections. We

first apply machine learning techniques in order to learn a better VN selection rule from the ad-hoc
metrics found the literature. In a second step, similar to [37], we resort to a neural network to predict
directly the perturbation patterns to apply in order to make BP decoding succeed.

2.3.1 Learning a better VN selection rule by combining metrics

Rationale

We have seen that many VN selection rules have been proposed in the literature, and that they all
are rather weak at predicting which bit(s) to perturb to make BP recover from a decoding failure.
In the experiment of Figure 2.5, the probability of decoding success after perturbing the bit ranked
first is about 26% at best. While this observation holds true for each reliability metric taken alone, it
is not unreasonable to believe that better prediction could be obtained by combining two or more of
these reliability measures. Some of them, for example all the oscillation-based metrics, are obviously
highly correlated with each other. There is little hope that combining them will help. But other
combinations seem likely to be complementary in nature, as they target different kind of errors. There
are essentially three main types of error that will result in a BP decoding failure: convergence to an
incorrect codeword (cannot be detected by BP), oscillating trapping sets, and stable trapping sets. An
oscillation-based metric is ideally suited to the detection of VNs that are part of oscillating trapping
sets, whereas counting the set of unsatisfied checks is expected to be a relevant indicator for detecting
stable trapping sets. Both metrics have in common to offer a snapshot of the decoding state at the
time of the failure. The input LLR magnitude is another source of reliability information which has
the merit of being totally independent of the decoding process. Interestingly, we note that certain
decoders, for example the ABP algorithm, already combine two metrics, albeit in a hierarchical manner
(one primary reliability measure, assisted by a secondary measure to break ties). Hence the idea of
letting the machine learn by itself the combination that works best for our purpose.

Learning setup and experiment

We have applied this idea to MRBP decoding of the (155, 64) Tanner code, with the goal of learning
a combination of metrics that could outperform the reference nSMEA metric taken alone. Three
different reliability metrics were selected, that we believe to be complementary: the nSMEA metric,
the nUC metric, and the iLLRm metric. A bit-level supervised learning approach has been followed,
wherein we train a model to predict the likelihood of correct decoding after perturbing a given bit. Bits
are processed individually, irrespective of the code structure (codeword framing is not taken explicitly
into account in the training). The three reliability metric are regarded as distinct features for the bit
of interest. Each metric provides a ranking r for the bit, where r is an integer in the range [1, 155].
The smaller the ranking, the less reliable the bit. A dataset was generated from a collection of 50000
noisy words that make BP decoding fail at a channel SNR of 3 dB. This represents a grand total of
N = 155 × 50000 = 7750000 bit entries. For each entry, the model input x is the triplet (r1, r2, r3) of
rankings calculated for the bit based on the received word the bit is part of, and on the corresponding
decoder state upon failure. The target y is a binary label equal to 1 if decoding succeeds after flipping
and saturating that bit, and 0 if the second decoding round also fails. The binary cross entropy loss
function was used to drive the training.

Results

All results reported in this subsection have been obtained with the Scikit-Learn library. The first
model we tried was a simple logistic regression, for which we were able to reach a validation accuracy
of 75.26%. The probability of decoding success and FER performance of the learned rule are shown in
Figure 2.10. In both cases we reach the exact same performance than with the nSMEA VN selection

©AI4CODE, October 2025 Page 53 of (104)

D3.2: Improved Learning-Based Decoders (Final)

13/06/2023

47Statistical Study and Frame Error Rate Performance of Logistic
Regression Model

Probability of success when (ipping each bit

0 50 100 150
VNs ranked from least to most reliable

0

0.05

0.1

0.15

0.2

0.25

0.3
Pr

ob
ab

ilit
y

of
 s

uc
ce

ss

Logistic Regression

0 1 2 3 4 5 6
Eb/N0(dB)

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Fr
am

e
Er

ro
r R

at
e(

FE
R

)

Tanner(3,5), k=64,n=155, nSMEA vs Logistic Regression model

SCBP nSMEA
SCBP LogReg

Figure 7: Frame Error Rate Performance when ?ipping least

reliable bit according nSMEA criterion compared to when

?ipping it using the Logis4c Regression Model .Figure 2.10: Left: Empirical distribution of the probability of decoding success as a function of the
bit ranking for the logistic regression model ; Right: Performance comparison between the nSMEA
criterion and the VN selection rule learned by logistic regression when applied to MRBP decoding of
the (128, 64) CCSDS LDPC code where only the least-reliable bit is perturbed (T = 1)

rule alone. The experiment was repeated with other learning models, yielding the following validation
accuracy scores:

• 75.45% with random forests

• 75.40% with a multi-layer perceptron having 1 hidden layer only

• 75.38% with a decision tree

• 75.10% using SVM with a linear kernel

• 73.00% using SVM with a polynomial kernel

None of them was able to improve over nSMEA, neither in prediction accuracy nor in practical MRBP
decoding performance.

Conclusions

There are at least three possible explanations for this disappointing outcome. The first would be that
there is nothing more to learn from the three selected metrics taken all together than from the nSMEA
metric alone. However this seems very unlikely given the fact that the iLLRm metric is a form of
prior information absolutely not related to the decoding itself. A second explanation could be that it
is due to the learning approach we have followed, which discards all information related to the code,
including the graphical structure. Indeed we process all code bits individually and on an equal basis,
whereas some bits can play a more important role than others in BP decoding. The third explanation
could be that the metrics we selected are a too crude summary of the decoder state. The problem
can be further aggravated by the choice made of expressing reliability in the normalized form of a
ranking, independently on the actual value of the metric. This coarse quantization of metrics could
have resulted in an additional loss of information. This is especially the case for metrics like nSMEA
where two bits ranked side by side may differ by a large number of sign mismatches, and thus have
very different reliability levels, which cannot be captured by the sole rank.

We have decided not to pursue further along this way as it occurred to us that, given that decoding
has failed, it might not be prudent to excessively trust metrics solely based on the decoder state upon
failure. Rather than relying on some possibly biased expert rule, a better idea could be to let the

Page 54 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

machine find by itself which information is relevant (or not), and figure out how to use it for guessing
the problematic bits. This is the principle followed by [37] and also the core of the approach outlined
in the next subsection.

2.3.2 Learning the perturbation patterns with an MLP

Motivation and goal

Our second approach was motivated by the desire to address the above-mentioned pitfalls, and follows
along the same lines as [37]. In [37], a small NN model is trained in a supervised manner to predict
the bits to perturb in order to make MRBP-IP decoding succeed. The model input is the decoder
input itself (the channel LLR values). The model output is a vector of real numbers in the range
[0, 1], that can be interpreted as the chances, as estimated by the model, that flipping a given bit will
make decoding succeed. A series of T single-bit flips is then applied on the subset of T bits having the
largest likelihood of success at the model output. The NN model consists of an MLP with n inputs,
n outputs, and two hidden layers, of size 2n and n, respectively. Supervised learning is driven by an
MSE loss function with the vector of channel LLRs as model input, and a length-n binary vector as
target, in which 1 and 0 denote a success or failure when re-decoding after flipping and saturating
the corresponding channel LLR in the input vector, respectively. On the short CCSDS LDPC code,
the proposed neural-aided decoder achieves slightly worse performance than a standard MRBP-IP
decoder that uses the nSMEA VN selection rule. We attribute this to the fact that, due to the way
it is trained, the model could actually be learning nothing more than the iLLRM VN selection rule,
or something equivalent. Our comparative analysis reported in Figure 2.5 has shown that iLLRm is
slightly worse at guessing which bit to flip than oscillation-based rules like nSMEA. In addition, the
channel LLR magnitude carries information that is highly relevant when it comes to decide whether a
degree-1 VN should be flipped or not, perhaps even more relevant than counting the number of sign
mismatches between the APP of the node and the outgoing extrinsic message (always equal to the
channel LLR for a degree-1 VN). That would explain the tiny performance advantage observed with
Raptor-like LDPC codes.

Like [37], we want to augment MRBP decoders with a simple MLP trained to predict the bits
that need to be perturbed in order to help BP converge towards a valid codeword. Unlike [37], we
would like, ideally, to be able to guess the whole perturbation patterns to apply (Hamming weight and
composition), instead of working only with single-bit impulses. We chose to approach the problem
from two complementary perspectives:

1. On which data do we need to train ?

2. With what kind of model architecture ?

Regarding the training data, it should include both objective information (information available at
the decoder input, not yet influenced by the later), and subjective information that best captures the
decoder state upon failure. Objective information can be trusted, subjective information may need
to be questioned. The most comprehensive subjective information that we can think of for training
would be to keep a record of the whole iterative decoding trajectory, i.e. to keep track of all messages
exchanged over all edges at each iteration. However this represents a very large amount of data that
would make training slow and difficult. We thus have to find some form of sufficient statistics easier to
work with. As for the NN architecture, we expect that it should somehow reflect our prior knowledge
on the problem, for example the code constraints that tie bits together.

Our first step towards this goal has been to verify that we could design a model that can learn
by itself an expert rule, for example the nSMEA VN selection rule. As a second and on-going step,
we are currently working on an original learning architecture that combines objective and subjective
information in a manner that explicitly account for the graphical structure of the code.

©AI4CODE, October 2025 Page 55 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Learning on nSMEA: 2 hidden layers model

● Architecture:

● Adam Optimizer; lr = 0.001; Binary Cross Entropy Loss Function; Early Stopping when no
improvement on Accuracy 2 measure.

R
e

lu

Input:
nSMEA values

(1xN) = (1x128) (1xN)

R
e

lu (1xN)

S
ig

m
o

id

(1xN)
Output:
Estimation on
each bit

Figure 2.11: NN model architecture used to learn the nSMEA expert rule

Learning an expert rule

We first have designed a NN model trained to estimate the probability of achieving successful decoding
after single-bit perturbations, based on a single source of information in input (single feature per bit).
The goal of this exercise was twofold: 1) to reproduce the results [37] but with a different VN selection
rule, and thereby verify the hypothesis we made on what is really learned by this model, and 2) to
make sure we master the basics of NN training with the PyTorch library.

We considered the (128, 64) CCSDS code for this experiment, and a simple fully-connected NN
model made of 2 hidden layers, of same size equal to the code length n, followed by an output layer of
size n also. As illustrated in Figure 2.11, a ReLU activation function was used at the output of each
hidden layer, supplemented by a sigmoid activation function for the final output layer.

To train the model, we collected 105 noisy frames that made I0 = 20 iterations of BP decoding fail
at a fixed SNR value of 4.5 dB. For each of them, we recorded the length-n integer-valued vector x
of nSMEA values obtained at the last iteration, as well as a length-n binary indicator vector y where
yi = 1 if flipping and saturating the channel LLR of bit i was found to yield a successful outcome after
another round of I1 = 20 iterations of BP, and 0 otherwise. The dataset used for supervised learning
consisted of the 105 (x,y) pairs, with x the model input and y the target. The empirical Hamming
weight distribution of the label vectors y is precisely the one shown in Figure 2.2. In particular, we
observe that the average number of ones per received word is approximately 8, with a maximum of 18.
Thus we note a strong imbalance between the "0" bit class and the "1" bit class within our dataset.
Following standard practice, 67% of the dataset was used for training, while the rest was reserved for
testing. The problem of learning the target vector y is decomposed into n separate binary classification
problems, one per code bit. Accordingly, the loss function L for a particular entry in the dataset was
calculated as the sum of the binary cross entropy losses calculated for each bit. Formally, if we denote
by ŷ the model output (vector of probabilities) corresponding to the binary label vector y, we have

L(y, ŷ) = − 1
n

n∑
i=1

yi log ŷi + (1 − yi) log(1 − ŷi)

The neural network was trained for 100 epochs with the proposed setup, using the Adam optimizer,
with a fixed learning rate of 0.001. The resulting accuracy curves for both training and testing are
plotted in Figure 2.12. We observe in particular that the model is able to reach a testing accuracy of
about 93.6%. However this value should be interpreted with some caution, as shown by inspection of
the confusion matrix which compares the true labels of the test set with the model’s prediction:

Page 56 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

True
Label

Predicted Outcome

"0" "1"

"0" 3929343 42299

"1" 230639 21719

From the confusion matrix, we can see that model training is affected by the imbalance between
0 and 1 in the dataset. As a result, the model excels at classifying correctly the "0" labels whereas
it falls short at classifying the "1" labels, due to uneven exposure during training. Therefore, the
trained model ends up predicting most of the time a "0" outcome instead of "1". This automatically
translates into a high testing accuracy due to the high number of "0" labels in the dataset, but does
not serve us well as what we first and foremost care about for the decoding is to correctly predict the
"1" labels. In order to properly evaluate the model for our purpose, we switched to another form of
accuracy metric that better relates to our main goal, which is finding what bit flip will most likely lead
to a successful decoding. As the model predicts the likelihood of each bit being a "1", we computed
on the testing set the probability that the bit with highest likelihood in the model output ŷ indeed
corresponds to a true "1" in the testing set. The result was 33.5%. In other words, perturbing the bit
with the highest likelihood of decoding success according to the model prediction was found to lead
to an actual decoding success at the end of the second round about 33.5% of the time.

The proposed metric better reflects the error-correction performance that we can expect from the
trained model than a standard accuracy score. On the other hand, it does not fixes the problem of
over-specialization of the model in predicting the "1". Many efforts were placed to account for the
dataset imbalance during training. In particular, different cost-adaptive loss functions have been tried,
wherein a weight was added to the loss function in an effort to help him pay more attention to "1"
than to "0" labels during training. We tried different weighting strategies: per batch, per codeword,
and even per bit. However none managed to provide a performance better than what was reported
above.

In order to assess how an actual probability of 33.5% of guessing correctly the bit to flip can trans-
late into FER performance, we have compared in Figure 2.13 the performance of MRBP decoding of
the (128, 64) CCSDS code where only the least-reliable bit is flipped and saturated (T = 1 pertur-
bation), for the expert nSMEA rule and for the rule learned by our model. I0 = I1 = 20 iterations
were used in both cases. One can see from the figure that the FER performance obtained with the

Learning on nSMEA: 2 hidden layers model

● Architecture:

● Adam Optimizer; lr = 0.001; Binary Cross Entropy Loss Function; Early Stopping when no
improvement on Accuracy 2 measure.

R
e

lu

Input:
nSMEA values

(1xN) = (1x128) (1xN)

R
e

lu (1xN)

S
ig

m
o

id

(1xN)
Output:
Estimation on
each bit

Figure 2.12: Loss and accuracy plots for the NN model trained to learn the nSMEA criterion

©AI4CODE, October 2025 Page 57 of (104)

D3.2: Improved Learning-Based Decoders (Final)

0 1 2 3 4 5 6

Eb/N0(dB)

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

(F
E

R
)

FER CCSDS (128,64), 1 bit flip with Lee Model using nSMEA

BP, 20 itr

MRBP-NN-nSMEA, 20+20 itr T=1

MRBP-nSMEA, 20+20 itr T=1

Figure 2.13: Performance of the proposed NN model vs standard nSMEA expert rule for MRBP-IP
decoding of the (128, 64) CCSDS code where only the least-reliable bit is flipped

learned rule and with the nSMEA rule completely match. In other words, our trained model managed
to match expert’s knowledge performance on 1 bit flip. Figure 2.14 shows the results obtained in
the same setting but considering now up to T single-bit perturbations within the T least-reliable bits
for the selected reliability measure, nSMEA or learned rule. Here again, the trained model perfectly
matches the performance of the expert’s knowledge. Hence we have been able to design a model that
can learn by itself an expert rule, when provided with the proper input.

We note that the nSMEA rule is actually quite simple to learn, so simple that the use of hidden
layers is not even necessary in this particular case. Indeed we have verified that the exact same
accuracy and FER performance can be obtained with a single-layer MLP having n inputs and n
outputs, without hidden layers in-between.

Page 58 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

0 1 2 3 4 5 6

Eb/N0(dB)

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

(F
E

R
)

FER CCSDS (128,64), T bit flips with Lee Model using nSMEA

BP, 20 itr

MRBP-NN-nSMEA, 20+20 itr T=10

MRBP-nSMEA, 20+20 itr T=10

MRBP-NN-nSMEA, 20+20 itr T=30

MRBP-nSMEA, 20+20 itr T=30

ML

Figure 2.14: Performance of the proposed NN model vs standard nSMEA expert rule for MRBP-IP
decoding of the (128, 64) CCSDS code for different number T of single-bit perturbations

As a second, slightly more involved proof of concept, we conducted a similar experiment where the
model was trained on a different input, namely the syndrome value observed at the time of the decoding
failure. The corresponding NN architecture is shown in Figure 2.15 below. The only difference with
the previous model is the size of the input layer, equal to the number m = n − k of syndrome bits
(check nodes), 64 in the present case. We used the same supervised learning setup as before, with a
different dataset, still composed of 105 (x,y) pairs, but where the model input x is now the syndrome
vector observed at the final iteration. The corresponding loss and accuracy plots are shown in Figure
2.16. Again, the accuracy measured on the test set was about 94%.

Figure 2.17 compares the performance of MRBP decoding of the (128, 64) CCSDS code with T = 1
and T = 10 single-bit perturbations, using either the rule learned by our model, or an expert nUC
rule in which bits are ranked in order of decreasing number of unsatisfied checks they participate in
(the higher this number, the less reliable the bit). I0 = I1 = 20 iterations were used in both cases. It
is interesting to note that, once again, the two performance closely match. In other words, the model
has been able to infer by itself the expert rule, including the fact that, for each bit, a certain set of
syndrome values need to be summed to calculate the final likelihood (the model was able to infer some

Learning on S_APP: 2 hidden layers model

● Architecture:

● Adam Optimizer; lr = 0.0001; Binary Cross Entropy Loss Function; Early Stopping when no
improvement on Accuracy 2 measure.

R
e

lu

Input:
S_APP values

(1xm) = (1x64) (1xN)

R
e

lu (1xN)

S
ig

m
o

id

(1xN)
Output:
Estimation on
each bit

Figure 2.15: NN model architecture used to learn the nUC expert rule

©AI4CODE, October 2025 Page 59 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Learning on S_APP: 2 hidden layers model

● Architecture:

● Adam Optimizer; lr = 0.0001; Binary Cross Entropy Loss Function; Early Stopping when no
improvement on Accuracy 2 measure.

R
e

lu

Input:
S_APP values

(1xm) = (1x64) (1xN)

R
e

lu (1xN)

S
ig

m
o

id

(1xN)
Output:
Estimation on
each bit

Figure 2.16: Loss and accuracy plots for the NN model trained to learn the nSMEA criterion

of the code constraints).

Learning on S_APP: 2 hidden layer model: FER decoding performance vs “Expert”:
ranking based on highest number of unsatisfied checks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0(dB)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Fr
am

e
Er

ro
r R

at
e(

FE
R

)

FER CCSDS (128,64), T bit 4ips, Learning on SUC

BP, 20 itr
MRBP-nUC, 20+20 itr T=1
MRBP-NN-SUC, 20+20 itr T=1
MRBP-nUC, 20+20 itr T=10
MRBP-NN-SUC, 20+20 itr T=10
ML

Figure 2.17: Performance of the proposed NN model vs expert nUC rule for MRBP-IP decoding of
the (128, 64) CCSDS code for different number T of single-bit perturbations

Learning more than a single expert rule

We tested multiple combinations of expert rules as input to Lee’s architecture [37], but none outper-
formed the nSMEA expert criterion. This led us to fundamentally question and rethink the architec-
ture used to predict the bits to be switched, as explained in the next sub-section.

Page 60 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

2.4 Deep learned MRBP

In the previous sections, we introduced MRBP decoding as a powerful method to improve BP decoding
for short LDPC codes, enabling it to get closer to MLD performance. However, MRBP requires an
unreasonably high number of decoding attempts to reach this performance level. MRBP operates by
identifying, whenever BP decoding fails, a set of problematic variable nodes (VNs) that hinder BP
convergence. Perturbations are then applied to these VNs, followed by subsequent decoding attempts.
We demonstrated that the expert-based rules used to select the VNs to perturb are rather weak,
motivating the need for improvement. To address this, we turned to learning-based methods. Our
first idea of learning a combination of expert rules bitwise and by standard machine learning techniques
was unsuccessful. We then turned our attention to the more capable shallow MLP model from [37],
which adopts a codeword-level learning approach where the learning algorithm leverages information
related to the entire codeword to decide which VNs to perturb. Unfortunately, here also, the NN was
not able to surpass the best-performing expert rule in identifying the most critical VNs to perturb.
This shortfall may stem from several factors, motivating for further investigations. In what follows,
we propose some modifications on the architecture of the NN model and its input that enhance the
model’s ability to identify the most critical VNs for perturbation. The central contribution lies in
demonstrating that by leveraging upon the principles and models of SBND investigated in Chapter 1,
we can predict more accurately which VNs should be perturbed, thereby outperforming expert rules.

The work reported in this section has been published in:

[ILDA25c] A. Ismail, R. Le Bidan, E. Dupraz, and C. Abdel Nour, “Learning Variable Node Selection
for Improved Multi-Round Belief Propagation Decoding” in Proc. of International Symposium
on Topics in Coding (ISTC), Los Angeles, CA, August 2025.

The following sections and results are an excerpt of Ahmad Ismail’s PhD manuscript. We refer the
interested reader to this document for complementary details and explanations.

2.4.1 Leveraging SBND to improve MRBP

This sub-section presents the core contribution of this chapter: inspired by SBND, we propose modifi-
cations to the NN-aided impulsive perturbation decoding method [37]. These modifications are based
on the observation that the problematic VNs that prevent the BP decoder from converging are a
subset of the full set of channel-induced errors. This suggests that the task of predicting which VNs
should be perturbed during impulsive decoding can be regarded as a relaxed version of the full channel
error estimation problem. SBND, as originally proposed, has demonstrated reasonable effectiveness in
estimating the complete channel error pattern. Therefore, we see the potential to leverage the princi-
ples and models developed for SBND to improve the performance of NN-aided impulsive perturbation
decoding. In the following, we outline the key differences between the proposed architecture and the
original NN-aided MRBP from [37].

Revisiting the model architecture

Since the NN-aided MRBP approach in [37] uses a lightweight MLP to predict which VNs to perturb,
the model’s performance may be limited. In addition to that, in the context of SBND, [1] reported that
the stacked GRU model is more capable in inferring the full channel errors. To this end, we propose
replacing the original MLP in the NN-aided MRBP decoder with a stacked-GRU as implemented in
section 1 to potentially enhance its ability to identify the problematic VNs for perturbation.

Revisiting the model input and training setup

From equation (1.18) in section 1, we have established that the pair (|Lch|, s) constitutes a sufficient
statistics for MLD. Given the proven effectiveness of this input representation in the SBND framework,
we adopt it for our NN architecture. While both this input representation and the signed channel

©AI4CODE, October 2025 Page 61 of (104)

D3.2: Improved Learning-Based Decoders (Final)

reliabilities used in [37], should capture the same information, the inclusion of the syndrome could
potentially provide a clearer picture of the underlying code structure. Furthermore, in this new input
representation we normalize the channel LLR magnitude following the min-max normalization rule

ỹ = y − ymin
ymax − ymin

, (2.1)

where ymin = mini yi and ymax = maxi yi, to obtain a normalized version denoted by |̃Lch|.
As seen in shapter 1, an important advantage of (|Lch|, s) is that it eliminates the dependence on

the transmitted codeword, allowing us to consider the all-zero codeword without loss of generality.
The NN is trained in a supervised manner using a labeled dataset composed of input–output pairs

at the codeword level. Randomly generated codewords are transmitted over a BI-AWGN channel at a
range of SNR values, followed by BP decoding with I0 iterations. The Ntr received words that result
in BP decoding failures are retained for further processing. For each BP decoding failure and each vni,
where i ∈ {1, . . . , n}, a single-bit perturbation is applied to the channel LLR Lch

i , and BP decoding is
re-executed with I1 iterations. This procedure yields a binary target vector

b = (b1, . . . , bn),

where bi = 1 if perturbing vni leads to successful BP decoding in the second attempt, and bi = 0
otherwise. For each BP failure instance, we obtain one input–output pair. The complete training
dataset is therefore composed of Ntr pairs:

D2 =
{(

|̃Lch|, s
)

j
,bj

}
, j ∈ {1, · · · , Ntr}, (2.2)

Compared to the MLP model in [37], the drawback of incorporating the syndrome into the input
is that the model’s input dimension now scales with the sum of the code length and the number of
parity bits.

As in SBND, we formulate the task of identifying the VNs to perturb as a binary classification
problem in which the model predicts, for each VN, whether it should be perturbed to enable successful
decoding. Accordingly, we train the network using the standard binary cross-entropy (BCE) loss,
between the probability estimates b̂ and the ground-truth label vector b, instead of the weighted
MSE adopted in [37]:

LBCE
(
b, b̂

)
= − 1

n

n∑
i=1

(
bi log b̂i + (1 − bi) log(1 − b̂i)

)
. (2.3)

Finally, we observed that training the models on a single SNR point was sufficient to achieve good
generalization over a range of SNRs; a trend also observed in SBND.

2.4.2 Performance of the proposed deep learned MRBP decoder

We aim to compare the performance of the proposed SBND-inspired learning architecture to the
original learning architecture of [37]. To this end, we consider the TUKL(96,48) short LDPC code.
We use I0 = 20 decoding iterations for the first BP decoding attempt, and I1 = 20 also for subsequent
ones.

Baseline

Before analyzing the specific contributions of each major modification we introduced (stacked GRU
architecture, different input representation), we need to establish a baseline reference. Unlike [37],
our approach formulates the task as a binary classification problem, trains the model using the BCE
loss, and uses training data collected at a single SNR point. We first need to verify that these changes
alone do not negatively affect the training process.

Page 62 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

To this end, we train the MLP described in [37] on a first dataset D1 =
{
(ỹj ,bj)

}
, j ∈

{1, . . . , Ntr} of 1M BP decoding failure examples, with normalized signed channel LLRs in input,
and with two key differences with respect to [37]: the weighted MSE loss function is replaced with the
BCE defined in equation (2.3) (accordingly a sigmoid activation function is applied on the model’s
output), and all BP failure samples are collected at a single SNR of 3 dB. This baseline model will
allow us to isolate the effects of the proposed modifications in subsequent experiments. The results
are shown in Fig. 2.18. We can see that these small changes not only did not affect the performance
of the model but they even allowed the model to perform better. Now the NN-aided MRBP denoted
by MRBP-NN-BCE matches the performance of the MRBP with the iLLRm criteria for T = 5 de-
coding attempts. Further studies showed that training on a single SNR point (3 dB) while keeping
the WMSE loss function led to a noticeable improvement over the MRBP-NN-WMSE model trained
on samples collected across 1–4 dB. In contrast, replacing WMSE with BCE alone yielded little to no
gain. However, when both modifications were applied together, they resulted in the more pronounced
improvement reported here.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

Figure 2.18: FER performance of an MRBP decoder with single-bit perturbations identified via a NN
with different loss functions and compared to other expert-based rules.

To observe the effect of increasing the number of samples, in Fig.2.18, we also show the performance
of the following model:

• MLPA-D1: Trained using the BCE loss but on a larger dataset consisting of 60M samples
collected at 3 dB SNR following the transmission of randomly generated codewords. The model
is optimized with the Adam optimizer, starting with a learning rate of 10−4, which is reduced
via a reduce-on-plateau scheduler based on validation performance. A dropout ratio of 0.1 is
applied after the first two hidden layers. Training is performed with a batch size of 4096 for a
total of 250 epochs.

As observed, MLPA-D1 does not outperform its 1M-sample counterpart, suggesting that this MLP
model, which features 46k trainable parameters on the TUKL(96,48) code, may have already reached
its performance limit. Nevertheless, MLPA-D1 serves as a baseline for the subsequent experiments.
So, all the models in the coming experiments, are trained with a 60M-sample dataset.

©AI4CODE, October 2025 Page 63 of (104)

D3.2: Improved Learning-Based Decoders (Final)

How important is the model input?

Now that we have the baseline reference MLPA-D1, we proceed to evaluate the impact of the proposed
input representation. As suggested at the beginning of the section, we consider as the model’s input
the pair (|̃Lch|, s) instead of ỹ. To this end, we train a new model:

• MLPA-D2: Trained on dataset D2 defined in (2.2), this model retains the same overall archi-
tecture as MLPA-D1, but its input dimension is increased from 96 to 2n− k = 144. To ensure
a fair comparison by keeping the total number of trainable parameters fixed at 46k, the size of
the first hidden layer is reduced from 2n = 192 to 155.

Fig. 2.19 compares the performance of MLPA-D1 and MLPA-D2 under the parallel MRBP
decoding setup outlined earlier with T = 5 decoding attempts. The figure shows that training on D2
improves the FER performance compared to D1, confirming that providing the combination of |Lch|
and sch as input does contribute to increasing the model’s ability to identify the VNs to perturb.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

Figure 2.19: FER performance as function of Eb/N0 for T = 5 MRBP decoding attempts, using
different model inputs to select the VNs to perturb.

How important is the model architecture?

Having established that the pair (|̃Lch|, sch) offers a more effective input representation, we next
investigate whether a GRU-based architecture can surpass an MLP when trained on D2. For this
purpose, we consider two models with approximately 20.6M parameters each:

• GRU-D2: A 5-layer stacked GRU with hidden size 6(2n− k), following the configuration in [1]
and as implemented in section 1. The network runs for 5 time steps, with the final hidden state
passed through a fully connected layer of size n and a sigmoid activation. Dropout of 0.1 is
applied within the GRU layers.

Page 64 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

• MLPB-D2: A custom MLP with seven hidden layers of 1835 neurons each, using ReLU activa-
tion and 0.1 dropout between layers, followed by an n-unit sigmoid output layer.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

Figure 2.20: FER performance as function of Eb/N0 for T = 5 MRBP decoding attempts, using
different model architectures to select the VNs to perturb.

As shown in Fig. 2.20, the GRU model achieves better performance than the best-effort MLP
in identifying problematic VNs for perturbation, consistent with the findings in [1]. Moreover, both
models outperform BP decoding with 100 iterations, further demonstrating the ability of learned
MRBP to enhance BP performance.

How does the new learned MRBP scheme compare to the expert rules?

This is perhaps the most important question and in fact the target of our studies in this chapter.
We aim to investigate whether learning can indeed help more accurately select the VNs to perturb in
MRBP. For that, we compare our best performing model GRU-D2 to one of the best expert-based
rule nSMEA. As depicted in Fig. 2.21, our trained model significantly outperforms nSMEA with just
one perturbation, that is T = 1. This superior performance is maintained as more perturbations
(T = 5, T = 10) are tested in parallel, indicating that learning-based methods can more accurately
predict which bits to perturb in MRBP decoding. In Fig. 2.21, we also show the single-bit perturbation
limit where a full search is performed by perturbing all VNs for each decoding failure. We observe that
the learned model approaches faster the single-bit perturbation limit. On the other hand, running
a 20.6M-parameter DNN for that task is significantly more complex than tracking oscillations in the
messages exchanged during iterative decoding.

©AI4CODE, October 2025 Page 65 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

Figure 2.21: FER performance as function of Eb/N0 for MRBP decoding using the model GRU-D2
or the nSMEA expert rule to select the VNs to perturb.

How does the new learned MRBP scheme compare to other selected decoders?

We compare our GRU-D2 learning-based MRBP decoder on the TUKL(96, 48) code against two ref-
erence decoders: the After-burner from [38], and the EQML [39] which use different MRBP variations.
As shown in Fig. 2.22, our model matches the performance of the After-burner with half the number
of perturbations and surpasses EQML with the same number of perturbations. These results demon-
strate that the proposed learning-based approach can both reduce the number of decoding attempts
and enhance MRBP performance, compared to other existing solutions.

In Fig. 2.22, we also provide results for a GRU-based SBND model with 39M parameters, trained on
the TUKL(96, 48) code with 64M ML error patterns following the training methodology of Chapter 1.
Compared to this standalone neural decoder, our GRU-D2 learned MRBP decoder achieves superior
performance with only half the number of parameters. In this case, it is more efficient to train an
SBND model to supplement MRBP rather than using it as a standalone decoder.

Would the model benefit if we provide post-BP decoding information in input?

In both datasets D1 and D2, the model input consists solely of channel-induced information and no
explicit post-BP decoding information is provided. Except the implicit fact that the training samples
correspond to failed BP attempts, the model has no direct knowledge of the decoder’s internal state
after BP terminates.

It is therefore natural to consider whether including post-BP information could help the model
better identify the problematic VNs. To this end, we propose an input representation consisting of
the nSMEA reliability measure of the VNs and the output syndrome vector sapp,(I0), which encodes
the state of the check nodes (CNs) at the decoder’s output in the final BP iteration I0.

Page 66 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

2 2.5 3 3.5 4 4.5

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

(F
E

R
)

Figure 2.22: FER performance as function of Eb/N0 for MRBP with GRU-D2 model compared to
other selected reference decoders on the TUKL(96, 48) code.

The nSMEA vector is normalized to the range [0, 1] via

˜nSMEA = nSMEA
maxi nSMEA

. (2.4)

The new dataset is then represented as:

D3 =
{(˜nSMEA, sapp,(I0))

j
,bj

}
, j ∈ {1, · · · , Ntr}. (2.5)

To evaluate the performance of this input representation, we trained the following model:

• GRU-D3: This model features the same GRU-based model GRU-D2, trained under the same
setup but on D3

We compare the performance of this model to the GRU-D2 in Fig. 2.23 for T = 5 decoding
attempts. While the model trained on D3 achieves better performance than the nSMEA criterion, its
performance in the low-SNR region is comparable to that of the model trained on D2. However, at
higher SNRs, the GRU-D3 model starts to lag behind.

A natural test is then to train the same architecture on D3 using data collected from the higher-
SNR region. Specifically, we have trained the GRU-D3 model on BP failures collected at an SNR of
4dB. Surprisingly, this did not yield any improvement (results not shown here), suggesting that the
limitation may arise from how meaningful the information is when combining nSMEA with the output
syndrome, particularly in the high-SNR regime.

While we do not have a definitive explanation for this trend, we can hypothesize the following. At
high SNRs, the dominant error patterns are unstable oscillating errors. Although nSMEA is generally a
good proxy for identifying oscillation-based errors, its ability to distinguish between different oscillating

©AI4CODE, October 2025 Page 67 of (104)

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

Figure 2.23: FER performance as function of Eb/N0 for MRBP with post vs pre-BP model input
representations with T = 5.

patterns becomes limited in this regime. The output syndrome, on the other hand, is an instantaneous
snapshot that strongly depends on the iteration count and does not capture the full trajectory of the
decoding process. Both metrics ultimately rely on the state of the BP decoder, which has failed,
thereby limiting the reliability of these features.

It is noteworthy here, that we have tried to combine other post-BP metrics to give in input to the
model but none achieved performance better than D3.

Does this approach scale?

By leveraging SBND, we have shown that learning can indeed help identify the VNs to perturb in
MRBP more accurately than the expert rules, reducing the number of decoding attempts required
while improving performance. On the other hand, the current model size is already very large
and impractical for deployment, raising questions about scalability.

For instance, we trained a GRU-based model with approximately 36M trainable parameters on
the CCSDS(128,64) code using 80M samples collected according to D2. The FER results are reported
in Fig. 2.24. Despite its large size, the model no longer outperform MRBP using the
nSMEA criterion on this particular example, highlighting the need for even more sophisticated
architectures and larger training datasets as code length increases.

2.5 Conclusion

In this chapter, we investigated multi-round BP (MRBP) decoding as a powerful strategy to push BP
closer to MLD performance but highlighted that MRBP requires a large number of decoding rounds
to achieve this goal. This limitation stems from relatively weak variable-node (VN) selection criteria,

Page 68 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

Figure 2.24: FER performance as a function of Eb/N0 for MRBP with GRU-D2 trained on 80M
samples from the CCSDS(128,64) code with T = 5 decoding attempts.

which reduce the effectiveness of identifying and perturbing the most problematic VNs that hinder
BP’s convergence.

Motivated by this observation, we first explored a first learning-based approach, proposing lightweight
machine learning models to fuse multiple expert-designed VN selection rules into a more effective strat-
egy. Although the results were underwhelming, this investigation helped identify potential weaknesses
in our methodology and guided the deeper exploration carried out in the following chapter.

Then, we extended our exploration of how learning can augment MRBP decoding, this time em-
ploying more powerful tools by establishing a connection to SBND. Specifically, the problematic bits
targeted for perturbation in MRBP correspond to a subset of channel errors that SBND is particularly
effective at estimating. Leveraging this insight, we trained learned models to identify which bits to
perturb, demonstrating that these models can outperform the expert-designed rules in selecting the
most critical bits. Consequently, the number of decoding rounds required by MRBP to approach
MLD performance was reduced. Despite this success, a key limitation remains: the current learned
models are too large for practical deployment, highlighting the need for more lightweight, dedicated
architectures.

In our work on NN-aided MRBP, we adopted an input representation consisting of the pair (Lch, s).
This representation serves as a sufficient statistic for maximum-likelihood decoding and has proven
effective in SBND, particularly when the targets were defined as ML error patterns. In the MRBP
setting, however, the goal is to identify bits to perturb that would enable BP decoding to succeed.
While this objective representation performed reasonably well, it provides no explicit information
about the current decoder state. We experimented with incorporating subjective post-BP metrics
through the pair (nSMEA, sapp,(I0)), which, although outperforming expert rules, still fell short of
the performance achieved by the pre-BP input representation. Moreover, this representation captures
only a coarse approximation of the decoder’s internal state and lacks fine-grained insight into BP’s

©AI4CODE, October 2025 Page 69 of (104)

D3.2: Improved Learning-Based Decoders (Final)

iterative behavior. These observations highlight a clear opportunity for further investigation into
richer and more informative input representations that could better guide the model in identifying the
bits most critical for improving BP convergence.

We believe that the model would benefit most if it were provided with a more comprehensive
view of the decoding process, allowing it to learn from the full behavior of the BP decoder. While
directly capturing the entire decoding trajectory is costly, especially for larger codes, another idea is
to run the model in parallel with the BP decoder. At each decoding iteration, the model could be
fed with relevant features summarizing the current decoder state, enabling it to refine its predictions
iteratively until reaching a confident decision about which bits are most likely responsible for BP’s
failure. Further investigation is needed to design suitable model architectures capable of processing
this sequential information effectively, with recurrent neural networks, such as the stacked GRU, being
a strong candidate due to their ability to model temporal dependencies. Yet our first investigations
in this direction have not been successful so far. We believe that the model would benefit most if
it were provided with a more comprehensive view of the decoding process, allowing it to learn from
the full behavior of the BP decoder. While directly capturing the entire decoding trajectory is costly,
especially for larger codes, another idea is to run the model in parallel with the BP decoder. At each
decoding iteration, the model could be fed with relevant features summarizing the current decoder
state, enabling it to refine its predictions iteratively until reaching a confident decision about which
bits are most likely responsible for BP’s failure. Further investigation is needed to design suitable
model architectures capable of processing this sequential information effectively, with recurrent neural
networks, such as the stacked GRU, being a strong candidate due to their ability to model temporal
dependencies. Yet our first investigations in this direction have not been successful so far.

The NN-aided MRBP approach presented in this work was limited to single-bit perturbations,
primarily for simplicity. Extending this approach to multiple-bit perturbations introduces significant
combinatorial complexity. For instance, if we were to consider perturbing up to two bits simultane-
ously using the same training data generation strategy, then for the TUKL(96, 48) code, the number
of possible bit combinations would be

(96
2
)

= 4560. This means that the model would need to eval-
uate whether each of these 4560 combinations leads to successful decoding, significantly increasing
the difficulty of the learning task. An alternative is to adopt more sophisticated learning paradigms
that avoid exhaustive enumeration. For instance, reinforcement learning could train a model to make
sequential bit-perturbation decisions based on decoder feedback, effectively learning a policy to navi-
gate the combinatorial space. This approach can align naturally with dynamic perturbation strategies
originally used in the augmented BP decoder.

Page 70 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

3
Improving Neural BP Decoders via Diversity and
Post-Processing

3.1 Motivation

In this section, we focus on improving the decoding performance of short LDPC codes, by leveraging
on and combining several techniques, such as neural belief-propagation (BP), decoding diversity, and
ordered statistics decoding (OSD) post-processing.

It is worth noticing that first works on improving the BP decoding performance actually focused on
so-called high-density parity-check (HDPC) codes [40–43]. These codes are defined by higher density
bipartite graphs – e.g., Bose-Chaudhuri-Hocquenghem (BCH) codes, Reed-Muller codes, binary Golay
codes, etc. – for which the standard iterative BP decoding usually yields very poor error correction
performance. In [40], an adaptive BP decoding approach was proposed, in which the decoding graph
used by BP is updated at each iteration, according to the output of a reliability-based decoding
algorithm, such as (OSD) [44]. The random recurrent decoding in [41, 42] and the multiple-bases BP
decoding in [43] exploit a decoding diversity approach, in the form of different graph representations
of the code, implying several BP decoders working either in serial or in parallel.

More recently, deep neural networks have received significant interest for improving the decoding
performance of short codes [45–50]. A weighted BP decoding has been introduced in [45], where the
weights are optimized using a neural network (NN). The topology of the NN mimics the BP decoding
process, with unwrapped decoding iterations. The approach can be used with either a feedforward
(FF) or a recurrent NN (RNN), the corresponding decoders being termed as BP-FF or BP-RNN. It
has been shown in [46] that the BP-RNN is able to outperform the standard BP decoder for short
BCH codes, belonging to the class of HDPC codes. Subsequently, several variants of NN-based BP
decoding have been proposed in the literature. In [49], a pruning method of irrelevant check-nodes
in a neural BP model has been proposed, aimed at jointly optimizing the code construction and the
decoding. The design of new decoding rules for finite-alphabet iterative decoders (FAIDs), based on
a quantized NN model, was proposed in [47]. Moreover, a new training method of the quantized NN
model was introduced in [48], where training sets are constructed by sampling errors with trapping
set support, to achieve decoding diversity for FAIDs on the binary symmetric channel. Resolving
decoding failures due to trapping sets, by means of deep learning techniques, has also been recently
investigated in [51].

Here, we consider the BP-RNN decoding of short LDPC codes. One critical difficulty faced by
BP decoding in the finite blocklength regime is the presence of particular structures in the bipartite
graph, which prevent the decoding algorithm from converging. Examples of such structures are trap-
ping sets [52] and absorbing sets [53], and they are closely related to the pseudo-codewords [54] and
near-codewords [55] concepts. We shall focus on the absorbing set concept, introduced in [53] as a
combinatorial object associated with the bipartite graph, and defined independently of the particular
message-passing decoding or channel noise model. For long LDPC codes, such structures are known
to be responsible of the so-called error floor phenomenon, since their size may be relatively small with
respect to the length of the code [53]. However, for short codes, their size may be comparable to the
number of errors that the code must correct, therefore possibly inducing a significant degradation of
the error correction performance in the waterfall region. To address this issue, we take a decoding
diversity approach, implying several BP-RNN decoders working either in serial or in parallel, where
each BP-RNN is trained to decode errors corresponding to absorbing sets of a specific type. We further
combine our approach with a low-order OSD post-processing step, providing an efficient way to bridge
the gap to maximum likelihood (ML) decoding. The main contributions of our work are summarized
below.

©AI4CODE, October 2025 Page 71 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Absorbing set classification and specialization of BP-RNN decoding. We first propose
a graph-search based algorithm, combining backtracking and a deep-first search like procedure, to
enumerate, in an efficient way, all the absorbing sets of a given size in the bipartite graph. We then
perform a fine classification of the enumerated absorbing sets, according to the degree profile of the
check-nodes in the induced sub-graph, and train a specific BP-RNN decoder for each absorbing set
class.

BP-RNNs selection and decoding architectures. To reduce the number of the BP-RNN de-
coders, we propose a selection procedure, where the selected decoders are the most complementary in
terms of the errors they can decode. We then consider two decoding architectures, in which the se-
lected BP-RNN decoders are executed in an either parallel or serial manner, and define the appropriate
metrics to assess their computational complexity and decoding latency.

BP-RNN diversity with OSD post-processing. We further combine our approach with an
OSD post-processing step, applied in case none of the selected BP-RNN decoders outputs a codeword.
There are two motivations behind the use of such a post-processing step. First, for short LDPC codes,
the OSD complexity is limited, compatible with practical applications, especially when the OSD order
is small. Here, we restrict the order of the OSD post-processing step to either 0 or 1. Second, it may
benefit from the diversity brought by the use of multiple BP-RNN decoders. Indeed, we show that
the coding gain brought by the use of multiple BP-RNN decoders is actually amplified by the use of
the OSD post-processing, resulting in a significant improvement of the error correction performance.

Regular BP with OSD post-processing. Finally, we also consider the case when OSD post-
processing is applied after the standard BP decoder, with the aim of proposing an alternative solution
(and therefore a different performance/complexity trade-off) to the previous BP-RNN diversity based
approach. The soft input of the OSD post-processor is defined as a weighted sum of a posteriori
LLRs across the BP decoding iterations, which can be conveniently modeled and optimized by a
simple neural approach. In the process, we also propose the use of the focal loss function [56], which
is shown to be better suited for this specific task. To approach the maximum-likelihood decoding
performance, we further consider a multiple OSD post-processing, where each OSD processes either
the above weighted (neural) sum, or the a posteriori LLRs of the BP at some specific (carefully chosen)
decoding iterations. We also propose a method to reduce the number of candidate codewords in the
OSD post-processing step, and show that the proposed approach is scalable for long LDPC codes.

Related publications. The above contributions have been published in:

[RMSF21] J. Rosseel, V. Mannoni, V. Savin, and I. Fijalkow, “Error structure aware parallel BP-
RNN decoders for short LDPC codes” in Proc. of International Symposium on Topics in Coding
(ISTC), August 2021.

[RMFS22] J. Rosseel, V. Mannoni, I. Fijalkow, and V. Savin, “Decoding short LDPC codes via BP-
RNN diversity and reliability-based post-processing”, IEEE Transactions on Communications,
vol. 70, no. 12, pp. 7830–7842, 2022.

[RMSF23] J. Rosseel, V. Mannoni, V. Savin, and I. Fijalkow, “Sets of complementary LLRs to
improve OSD post-processing of BP decoding” in Proc. of International Symposium on Topics
in Coding (ISTC), September 2023.

We provide an extended summary of the above contributions in the next sections. For more details
we refer to the above publications.

Page 72 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

3.2 BP-RNN Diversity from Absorbing Sets Classification: Train-
ing, Selection, and Decoding Architectures

We consider a decoding diversity approach, implying several BP-RNN decoders working either in serial
or in parallel, where each BP-RNN is trained to decode errors corresponding to absorbing sets of a
specific type. To do so, we need:

• An efficient algorithm capable to enumerate the absorbing sets of the Tanner graph (up to a
given size),

• A classification method (grouping in the same class absorbing sets with similar structure),

• A method to construct a specific training set for each class of absorbing sets (thus providing a
BP-RNN decoder specialized on the class),

• A method to select a small number of specialized BP-RNN decoders (to reduce the overall
decoidng complexity),

• A method to organize the BP-RNN diversity, i.e., in an either parallel or serial architecture.

We describe the above steps in the subsequent sections, then provide numerical results and discuss
the implications of the proposed approach.

3.2.1 Absorbing sets: search algorithm and classification

A brute-force search algorithm to enumerate all the absorbing sets of a given size ν would have to
explore all the

(N
ν

)
candidates, where N is the code length, which may become computationally in-

tractable even for relatively small values of N and ν. Several exhaustive/non-exhaustive enumeration
algorithms have been proposed in the literature, to enumerate elementary trapping sets [57–59], trap-
ping or absorbing sets for specific classes of LDPC codes [60, 61] or only small or dominant such
structures [62, 63], and fully absorbing sets [64, 65]. Several of these algorithms rely on a linear pro-
gramming based branch-and-bound approach, e.g., [59, 64,65].

In [RMFS22], we propose a graph search based algorithm, which, to the best of our knowledge,
is the first specifically developed for the exhaustive enumeration of absorbing sets, without any re-
striction on the structure of the Tanner graph of the absorbing sets to be enumerated. The proposed
algorithm is essentially a backtracking algorithm that incrementally builds absorbing set candidates,
and abandons a candidate as soon as it determines that it cannot possibly be completed to an ab-
sorbing set. Candidates are built incrementally by traversing the bipartite graph in a depth-first
search (DFS) manner, that is, starting from a variable-node chosen as root, and exploring as deeply
as possible before backtracking. The main difference with the standard depth-first search is that our
algorithm does not visit only one, but a subset of variable-nodes at each depth level, which are chosen
to increment the candidate solution (for details, see [RMFS22]).

To illustrate the capability of the proposed algorithm, we consider the following two codes, both
of rate 1/2, which will be subsequently used throughout this section.

Code-1 is a regular LDPC code, of length 64 bits, with variable-nodes of degree 3 and check-nodes
of degree 6, constructed by using the progressive edge growth (PEG) algorithm [66]. It has girth
g = 6, with multiplicity 164 (i.e., number of cycles of length g).

Code-2 is the LDPC code from [67], known as the CCSDS LDPC code. It is of length 128 bits, with
half of variable-nodes of degree 3 and the other half of degree 5, and check-nodes of degree 8. It
has girth g = 6, with multiplicity 2336.

©AI4CODE, October 2025 Page 73 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Table 3.1: Number of Extended-Types (ET) and Absorbing Sets (AS)
Code-1 Code-2

ν ET-Number AS-Number ET-Number AS-Number
3 1 164 1 32
4 2 1 452 6 944
5 3 9 413 12 11 504
6 9 64 813∗ 32 152 824
7 16 450 340 69 2 124 928
8 24 2 994 834∗ 157 28 670 736

∗Code-1 contains one codeword of weight 6, and 37 codewords
of weight 8, corresponding to absorbing sets with ω = 0

In Table 3.1, we provide the total number of absorbing sets (“AS-Number” columns), for both
Code-1 and Code-2, and absorbing set size values ν ≤ 8. We note that for Code-2 and ν = 8, a brute-
force search algorithm would require exploring a number of

(128
8
)

≈ 240 candidates. Our algorithm
enumerated all the absorbing sets of size ν = 8 in 38 minutes (Intel Xeon @2.20GHz processor).

The type of an absorbing set A is defined as ν-(ω, ε), where ν = |A| is the number of variable-nodes
in A, and ω := |O(A)|, resp. ε := |E(A)|, is the number of checks of degree odd, resp. even, in the
subgraph induced by A. Thus, the subgraph induced by A comprises ν variable-nodes and ω + ε
check-nodes. However, note that absorbing sets of the same type do not necessarily induce the same
subgraph. To further characterize the structure of the induced subgraph, we define the check-node
degree profile (of the subgraph induced by A) as Pc = (m1,m2, . . .), where md is the number of
check-nodes connected to exactly d variable-nodes in A (note that the sequence md is actually finite,
of length equal to the maximum check-node degree in the subgraph induced by A). Finally, we define
the extended type of A as ν-(ω, ε, Pc).

We classify the absorbing sets according to their extended type. The number of different extended-
type values (i.e., number of different classes) is given in Table 3.1, in the “ET-Number” column.

3.2.2 Specialization of BP-RNN decoding

Having at our disposal an efficient algorithm to enumerate absorbing sets of a given size, we perform
a fine classification of the found absorbing sets, by grouping into a same class absorbing sets with the
same extended type. The goal is to train a specific BR-RNN decoder for each class. The approach
bears similarity to, and is motivated by [48, 68], where decoding rules for FAIDs have been either
designed or learned to correct specific trapping sets for the binary symmetric channel.

We consider a binary-input AWGN channel, with BPSK alphabet (±1) inputs, and noise variance
σ2. Since both the channel and the BP-RNN decoder are symmetric, we can train the latter on noisy
versions of the all-zero codeword.

One way to generate a training set for a given class of absorbing sets, i.e., a given extended type
ν-(ω, ε, Pc), is to randomly generate noisy versions of the all-zero codeword, and to select those whose
error support is an absorbing set having the desired extended type. This would be rather tedious
and time consuming. A more efficient way is to use our knowledge of absorbing sets (determined by
the algorithm from previous section), and generate Gaussian noise by means of a truncated Gaussian
distribution, to produce errors only on desired locations. Precisely, we proceed as follows. We first
chose an absorbing set A at random, from those having the desired extended type ν-(ω, ε, Pc). Then
we generate a random word y = (yn = 1 + zn)n=1,...,N , with

zn ∼
{

N (0, σ2,−∞,−1), if n ∈ A
N (0, σ2,−1,∞), otherwise (3.1)

where N (0, σ2, a, b) denotes the truncated normal distribution with mean 0 and variance σ2, taking
values in the interval (a, b). The training set is obtained by repeating the above procedure (including

Page 74 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

0 50 100 150 200
Edge indexes sorted according to

increasing weight values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

W
ei
gh

t v
al
ue
s

BP-RNN [13]
BP-RNN trained on class
7− (5, 8, (5, 8))
BP-RNN trained on class
7− (1, 9, (0, 9, 1))
BP-RNN trained on class
4− (2, 5, (2, 5))

(a) Data pass layer

0 50 100 150 200
Edge indexes sorted according to

increasing weight values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(b) A posteriori layer

Figure 3.1: Weight profiles of various BP-RNN decoders (Code-1, SNR = 5 dB)

the random choice of A) multiple times. This way, the training set is representative of the error class
(identified by the extended type of the absorbing error set), and thus the trained BP-RNN decoder
becomes specialized in decoding the errors of the class.

To illustrate the specialization of the trained decoder, Fig. 3.1 shows the weight values for three
BP-RNN decoders, trained for three different error classes, with corresponding extended types shown
in the legend. The (unspecialized) BP-RNN decoder trained as in [46] is also shown. To avoid
clutter, weight values are sorted in increasing order, and an ordered set of weight values is referred
to as weight profile1. We consider the Code-1 and show the weight profiles for the both data pass
and a posteriori layers. (See [RMFS22] for the definition of data pass and a posteiori layers.) The
weight profiles in Fig. 3.1 clearly indicate that weight optimization responds differently to training
sets corresponding to different error classes. We exploit in the next section the diversity induced by
the BP-RNN specialization.

3.2.3 BP-RNN diversity selection

Using the procedure from previous section, we train one specialized BP-RNN decoder for each error
class, i.e., extended type2 ν-(ω, ε, Pc), with absorbing error set size ν ≤ νmax (the choice of νmax
is discussed in Section 3.2.5, providing the numerical results). Let J denote the total number of
specialized BP-RNN decoders.

Here, we propose a selection procedure to reduce the number of BP-RNN decoders, as well as
to avoid similar training effects (which may arise, for instance, due to absorbing sets of a given size
containing absorbing sets of smaller sizes). To do so, we assess the complementarity of the trained
decoders, in terms of the errors they can decode.

We first generate a common test set, T , containing random noisy versions of the all-zero codeword,
which is then used to assess the individual error correction performance of each of the trained decoders.
We denote by Fj ⊂ T the susbset of words on which the BP-RNN decoderDj failed, where j = 1, . . . , J .
Then, we recursively construct an ordered list of decoder indexes, denoted J, as follows. We start by

1Note that different weight profiles indicate different sets of weight values, while similar weight profiles indicate similar
sets of weight values. However, in the latter case, similar weights may apply to different edges.

2We take off extended types for which ω = 0, as they correspond to the support of non-zero codewords. Such errors
cannot be detected or corrected.

©AI4CODE, October 2025 Page 75 of (104)

D3.2: Improved Learning-Based Decoders (Final)

initializing J as the empty list, J = ∅. To add a new index, jnew to J, we use the following rule,

jnew = argmin
j∈{1,...,J}\J

|FJ ∩ Fj | , (3.2)

where FJ := T , if J = ∅, and FJ := ∩i∈JFi, otherwise. The above rule is applied recursively J times,
until J contains all the decoder indexes j = 1, . . . , J , in a sorted order. In case the argmin in (3.2) is
not unique, an arbitrary one is chosen.

Note that when J = ∅, the rule (3.2) rewrites as jnew = argminj∈{1,...,J} |Fj |. Hence, the first
decoder (index) added to the list is the one minimizing the word error rate. Subsequently, when
J ̸= ∅, the new decoder added to the list is the most complementary with those already in J, in the
sens that it minimizes the number of words on which all the decoders indexed by J ∪ {jnew} fail.

For Z ≤ J , let J(1:Z) ⊂ J be the sublist defined by the first Z indexes in J. We define

DZ := {Dj | j ∈ J(1:Z)} (3.3)

Note that DZ is an ordered list of decoders3, which we will refer to as BP-RNN diversity of size Z
(using a similar terminology to the one in [48,68]). The Z BP-RNN decoders in DZ may then be used
with either a parallel or a serial decoding architecture, as discussed in the next section. The value of
Z may be dictated by complexity reasons, or chosen to ensure small (negligible) degradation of the
error correction performance, with respect to the case when all J BP-RNN decoders are used.

3.2.4 BP-RNN diversity decoding architectures

We consider a BP-RNN diversity DZ , comprising Z BP-RNN decoders. For simplicity, we index the
BP-RNN decoders in DZ from 1 to Z, thus DZ = {D1, . . . , DZ}. Fig. 3.2 shows the proposed parallel
and serial architectures, using the Z BP-RNN decoders in DZ .

In the parallel architecture, each decoder outputs an estimate ĉj = (cj,1, . . . , cj,N) ∈ {0, 1}N of the
transmitted codeword c, according to the sign of the corresponding LLR values at the last decoding
iteration. The output of the parallel architecture is determined as the maximum likelihood (ML)
codeword, among the codewords outputted by the constituent BP-RNN decoders (if any, see below).
For the binary-input AWGN channel (with ±1 inputs), the ML criterion simply writes as

ĉ = argmax
ĉj∈S

P (ĉj |y) = argmin
ĉj∈S

N∑
n=1

ynĉj,n, (3.4)

where S := {ĉj | syndrome(ĉj) = 0} denotes the set of ĉj ’s verifying the syndrome. Decoding is
then successful if ĉ is equal to the transmitted codeword. If none of the BP-RNN decoders outputs
a codeword, the decoding fails. In such a case, the ML criterion – or a similar bitwise maximum a
posteriori criterion – may still be applied to select one of the ĉj outputs, if desired, e.g., in order to
minimize the bit error rate of the decoder (however, we will only be concerned with word error rate
results in this paper).

In the serial architecture, the constituent BP-RNN decoders are run sequentially according to the
order given by the sorting procedure from Section 3.2.3. Decoding stops as soon as a BP-RNN decoder
Dj outputs a codeword ĉj (syndrome(ĉj) = 0), which becomes the output ĉ of the serial architecture.
Decoding is then successful if ĉ is equal to the transmitted codeword. If none of the BP-RNN decoders
outputs a codeword, decoding fails. For simplicity, in Fig. 3.2b, we take ĉZ as the output of the serial
architecture in this case.

The parallel architecture yields a reduced maximum decoding latency, compared to the serial one.
This comes however at the cost of an increased complexity, from the both computational and hardware
perspectives, since Z BP-RNN decoders must be instantiated in hardware. For the serial architecture,

3As a matter of fact, the three BP-RNN decoders in Fig. 3.1, specialized on absorbing set error classes, correspond
to DZ=3.

Page 76 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

(a) Parallel architecture

(b) Serial architecture

Figure 3.2: BP-RNN diversity decoding architectures

only one decoder may be instantiated in hardware, which may then be reused to perform sequentially
the Z BP-RNNs (while updating the corresponding set of weights). For details on the average-case
computational complexity, as well as the average-case decoding latency, for the both parallel and serial
architectures, we refer to [RMFS22].

3.2.5 Numerical results

Training settings

We consider the two LDPC codes of rate 1/2 and length either 64 (Code-1) or 128 (Code-2) bits,
detailed in Section 3.2.1. We train one specialized BP-RNN decoder for each absorbing set error class,
with error set size ν ≤ νmax.

• For Code-1, we choose νmax = 8, which gives a total number of J = 52 error classes (see
Table 3.1 4).

• For Code-2, we choose νmax = 7, which gives a total number of J = 120 error classes (see
Table 3.1).

For Code-2, the choice of νmax = 7 is due to complexity reasons (to limit the number of trained
decoders). However, we note that for an SNR = 4 dB, in the waterfall region of Code-2, the average
number of errors is Npe = 7.2, where N = 128 is the code-length, pe = Q(1/σ) = 0.0565 is the error
probability of the binary-input AWGN channel, σ is the standard deviation of the Gaussian noise,
and Q denotes the Q-function. For Code-1, for the same SNR = 4 dB, the size of a random error set
is less than or equal to the chosen νmax = 8, with probability slightly greater than 0.99.

Each specialized BP-RNN is trained independently, using the training set construction method
presented in Section 3.2.2. In addition, we also train an unspecialized BP-RNN decoder, according to
the procedure described in [46], to provide a benchmark for the presented numerical results. We use
the same SNR for training and testing, thus, all BP-RNNs are trained for each SNR value ranging
from 1 dB to 6 dB, with a step of either 0.5 dB or 1 dB. Finally, we mention that we used the Keras
library for training, with training parameters shown in Table 3.2.

4Note that the total number of error classes (ET-Number) in Table 3.1 is 55, three of which correspond to the support
of non-zero codewords of size either ν = 6 or ν = 8, for which training is not performed.

©AI4CODE, October 2025 Page 77 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Table 3.2: Keras Parameters
Parameters Parameters values
Optimizer RMSprop [69]

(Gradient descent) (initialized at a learning rate of 10−3)
Epoch number 10

Training batch size 8192
Number of batches 37 to 122 (depending on the SNR)

Maximum number of decoding iterations for training and testing

In this paragraph, we discuss the choice of the maximum number of decoding iterations during the
training and the testing phases, denoted by Itrain and Itest, respectively. (See also the discussion from
[RMFS22, Section II-C].) We fix the maximum number of decoding iterations for testing our BP-RNN
decoders to Itest = 25 iterations, and investigate here the impact of the maximum number of decoding
iterations used at the training phase, Itrain.

We consider the Code-1, and train all the BP-RNN decoders for Itrain ∈ {5, 10, 20, 25}. Fig. 3.3
shows the frame error rate (FER) results, using Itest = 25 iterations, for (a) the BP-RNN decoder

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

D1 (Itrain = 5)
D1 (Itrain = 10)
D1 (Itrain = 20)
D1 (Itrain = 25)

(a) BP-RNN D1, trained on class 7 − (5, 8, (5, 8))

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

BP-RNN [13] (Itrain = 5)
BP-RNN [13] (Itrain = 10)
BP-RNN [13] (Itrain = 20)
BP-RNN [13] (Itrain = 25)

(b) BP-RNN [46]

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

Serial 52 (Itrain = 5)
Serial 52 (Itrain = 10)
Serial 52 (Itrain = 20)
Serial 52 (Itrain = 25)

(c) All specialized BP-RNNs, serial architecture

Figure 3.3: Impact of training parameter Itrain on the FER performance, for BP-RNN decoders using
Itest = 25 (Code-1)

Page 78 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

specialized on the error class 7-(5, 8, (5, 8)), indicated as D1 in the legend5, (b) the unspecialized
BP-RNN decoder [46], and (c) the serial architecture using the 52 specialized BP-RNN decoders.
We observe no noticeable difference on the FER performance, except in Fig. 3.3a, where the FER
performance for Itrain = 5 is slightly degraded with respect to Itrain ∈ {10, 20, 25}. In the following,
we choose Itrain = 10, which allows for faster training. We can note that similar observations hold for
Code-2 (not shown here).

BP-RNN diversity selection

We apply now the BP-RNN diversity selection procedure from Section 3.2.3, to both Code-1 and Code-
2. We proceed as follows. First, we fix SNR = 5 dB, and we train J BP-RNN decoders specialized
on the J error classes (J = 52 for Code-1, J = 120 for Code-2). We order these decoders according
to the procedure described in Section 3.2.3, where we use a common test set T containing 108 noisy
codewords (SNR = 5 dB) to assess their individual error correction performance. Then we select
a diversity DZ of BP-RNN decoders according to (3.3), corresponding to Z different error classes.
Subsequently, we only consider BP-RNN decoders specialized on the selected error classes, but we
train them again for each SNR value used for testing6.

1 3 5 7 9 11 13 15 17 19
Number of decoders (Z)

5.2

5.3

5.4

5.5

5.6

SN
R
fo
r a
 F
ER
 o
f 1
0

4

SNR vs Number of decoders
SNR loss of 0.1 dB
SNR loss of 0.01 dB

Figure 3.4: SNR for target FER = 10−4, as function of Z (Code-1)

For Code-1, Fig. 3.4 shows the SNR required for achieving a target FER = 10−4, as a function
of the number of selected BP-RNN decoders Z (only results for Z = 1, . . . , 20 are shown, since we
observe no further improvement of the FER for higher Z values). We choose Z = 10, corresponding
to an SNR loss of less than 0.1 dB, with respect to the case when all the J BP-RNN decoders are
used. We use the same procedure to select a number of BP-RNN decoders for Code-2, which yields
the same value Z = 10, for which the SNR loss is again less than 0.1 dB. Finally, in Table 3.3, we
show the extended types for the Z = 10 error classes, corresponding to the selected decoders.

Frame error rate results

We consider the BP-RNN diversity D10 composed of the Z = 10 BR-RNN decoders selected in the
previous section, and evaluate the FER performance, as well as the average-case complexity and
decoding latency, for both parallel and serial architectures from Section 3.2.4.

Fig. 3.5 shows the FER results for (a) Code-1, and (b) Code-2. For comparison purposes, we
also show the FER performance of the BP decoder and the BP-RNN decoder from [46], with either

5See also Table 3.3 and the corresponding discussion from Section 3.2.5.
6We have also performed simulations using the BP-RNN decoders trained for SNR = 5 dB only, and testing them on

different SNR values. Our simulation results were very similar to those obtained by training again the BP-RNN decoders
for the actual SNR value used for testing. We chose to show simulation results for the case where the training and testing
SNR values are equal, simply for consistency reasons.

©AI4CODE, October 2025 Page 79 of (104)

D3.2: Improved Learning-Based Decoders (Final)

Table 3.3: Extended Types (ET) for the Selected Error Classes
Code-1 Code-2

Dec. Error-Class (ET) Dec. Error-Class (ET)
D1 7-(5, 8, (5, 8)) D1 7-(7, 11, (6, 11, 1))
D2 7-(1, 9, (0, 9, 1)) D2 5-(7, 9, (7, 9))
D3 4-(2, 5, (2, 5)) D3 6-(4, 10, (4, 10))
D4 7-(3, 7, (1, 7, 2)) D4 7-(5, 9, (5, 9))
D5 8-(2, 9, (1, 8, 1, 1)) D5 6-(8, 10, (8, 10))
D6 6-(2, 7, (2, 6, 0, 1)) D6 7-(5, 11, (4, 11, 1))
D7 5-(1, 7, (1, 7)) D7 7-(5, 8, (5, 8))
D8 6-(2, 7, (1, 7, 1)) D8 7-(7, 7, (7, 7))
D9 7-(1, 9, (1, 8, 0, 1)) D9 7-(3, 11, (3, 11))
D10 3-(3, 3, (3, 3)) D10 7-(7, 13, (7, 13))

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

BP (Itest = 25)
BP (Itest = 250)
BP-RNN [13] (Itest = 25)
BP-RNN [13] (Itest = 250)
Serial 10 (Itest = 25)
Parallel 10 (Itest = 25)

(a) FER results for Code-1

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10 4

10 3

10 2
FE

R

BP (Itest = 25)
BP (Itest = 250)
BP-RNN [13] (Itest = 25)
BP-RNN [13] (Itest = 250)
Serial 10 (Itest = 25)
Parallel 10 (Itest = 25)

(b) FER results for Code-2

Figure 3.5: Frame Error Rate (FER) results

Itest = 25, or Itest = 250. The latter Itest value corresponds to the cumulative maximum number of
iterations performed by the BP-RNN decoders in the diversity D10.

We observe that the parallel and serial architectures exhibit virtually the same FER performance,
the corresponding curves being practically superimposed one on another. Compared to the conven-
tional BP decoding, the BP-RNN diversity D10 produces an SNR gain of approximately 0.4 dB with
respect to BP(Itest = 25). This comparison is relevant to applications with strict latency requirements,
since both the BP(Itest = 25) and the parallel BP-RNN diversity have the same worst-case decoding
latency. By way of comparison, for Code-2, a similar gain over the conventional BP has been recently
reported in [23, Fig. 6], by using an automorphism ensemble decoding (AED) approach, with 16 BP
decoders working in parallel7. If the worst-case latency constraint is relaxed, it can be observed from
Fig. 3.5 that BP(Itest = 250) achieves similar FER performance to the BP-RNN diversity D10. Similar
considerations hold for the comparison between the (unspecialized) BP-RNN [46] and the BP-RNN
diversity D10, with one noticeable exception for Code-1, for which it can be observe that increasing
the number of iterations from Itest = 25 to Itest = 250 does not improve the FER performance of the
BP-RNN [46] decoder (or only slightly in the low FER region). Finally, we note that using only the
first decoder (D1) of our specialized BP-RNN decoders yields similar FER performance to the unspe-
cialized BP-RNN [46]. While this is not shown in the figure (to avoid clutter), it can be observed for

7We did not include the AED-16 curve from [23] in Fig. 3.5b, to avoid clutter. The gain reported in [23] was observed
using 32 decoding iterations.

Page 80 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Code-1 by comparing the FER results in Figs. 3.3a and 3.3b.

For an evaluation of the average-case computational complexity and the average-case decoding
latency we refer to [RMFS22].

3.2.6 Discussion

In this section we addressed the problem of enhancing the BP-RNN performance by exploring a
decoding diversity approach, where BP-RNN decoders are specialized to specific classes of errors. Our
first results revealed that the weight optimization responded differently to training sets corresponding
to different error classes (Fig. 3.1), indicating an actual specialization of the decoder with respect to the
error class. Then, we showed that the proposed BP-RNN diversity approach, coupled with a parallel
decoding architecture, allows increasing the decoding performance without increasing the worst-case
latency (Fig. 3.5). If the worst-case latency constraint is relaxed, the BP-RNN diversity performance
can be attained by the conventional BP decoder, at the cost of a larger number of decoding iterations.
Thus, we may conclude that the decoding grain brought by the proposed approach is essentially
a gain in convergence speed, rather than a gain in error correction capability. This is actually a
much more general remark that applies to most of the neural BP decoding approaches reported in
the literature (and our approach is no exception): it turns out that the common characteristic of
neural BP based approaches is that they increase the decoding speed rather than the error correction
capability. However, the diversity decoding approach investigated in this section can be leveraged
in different ways, and in the next section we further combine our approach with a reliability-based
post-processing step, as a means of boosting its error correction capability.

3.3 BP-RNN Diversity with OSD Post-Processing

3.3.1 OSD decoding

OSD was first proposed in [44], as a decoding method capable to approach the ML decoding perfor-
mance, for moderate-length linear block codes, with polynomial complexity. It can be used as a stand-
alone decoding algorithm, exploiting the soft-output of the channel (Lch,n), or as a post-processing
step, exploiting the output of a soft-decision decoder (L̃n).

In OSD, variable-nodes are first sorted according to their reliability (that is the absolute value of
the corresponding soft decision). The parity-check matrix of the code is then brought to a systematic
form8, H = [A | I], where A is a matrix of size M×(N−M) and I is the identity matrix of size M×M ,
and so that the K := N −M columns of A correspond to the most possible9 reliable variable-nodes.
By a slight abuse of language, we simply refer to variable-nodes corresponding to the columns of A
as the most reliable ones, and to the remaining variable-nodes as the least-reliable ones. In OSD-0,
hard-decision is made on the most reliable variable-nodes, and the least reliable ones are determined
by solving the linear system given by H. Hence, decoding is successful if and only if the most reliable
variable-nodes are error-free. To address the case where these variable-nodes contain errors, OSD-
w considers all the possible choices of at most w errors among them. For each choice, the initial
hard-decision of the corresponding variable-nodes is flipped, and the least reliable variable-nodes are
determined again by solving the linear system given by H. This procedure produces a list of

∑w
i=0

(K
i

)
codewords, from which the most likely one is selected, according to an ML rule, such as (3.4). OSD-w
may closely approach the ML decoding performance, assuming the w value (referred to as OSD order)
is suitably large.

8For simplicity, we assume here that the parity check-matrix is of rank M .
9Taking into account that column swaps may be needed, in case the M least reliable columns of H are not linear

independent.

©AI4CODE, October 2025 Page 81 of (104)

D3.2: Improved Learning-Based Decoders (Final)

40 30 20 10 0 10 20 30 40
A posteriori LLR values

10 5

10 4

10 3

10 2

10 1

100

CD
F

BP (Itest = 25)
BP-RNN trained on class
7 (5, 8, (5, 8)) (Itest = 25)

Figure 3.6: CDF of the a posteriori LLR values when decoding fails (Code-1, SNR = 4 dB, maximum
number of decoding iterations Itest = 25)

3.3.2 OSD as a post-porcessing step

To bridge the error correction performance gap between suboptimal BP decoding and ML decoding,
[29] suggested combining BP decoding with a low-order OSD (w ≤ 1), where an OSD step is performed
at the end of each iteration of the BP decoding. Here, we propose the use of OSD as a post-processing
step, applied only in case that none of the constituent BP-RNN decoders (of the BP-RNN diversity DZ)
outputs a codeword. In such a case, we process one OSD using the soft-decision (a posteriori LLRs)
delivered by each of the constituent BP-RNN decoders. This produces a list of Z codewords (one for
the OSD post-processing of each BP-RNN decoder), and the ML rule (3.4) is used to determine the
most-likely one, which becomes the outputted codeword ĉ. Note that the above description applies
to the both parallel and serial architectures, since OSD post-processing is only performed when all
the constituent BP-RNN decoders failed to find a codeword. To reduce the complexity of the post-
processing step, we also limit the order of the OSD to w ≤ 1.

There are two main motivations behind the use of the OSD post-processing step. First, the
complexity of the low-order OSD is dominated by the Gaussian elimination step, needed to bring the
parity check-matrix to a systematic form. However, for LDPC codes, the sparsity of the parity-check
matrix can be advantageously exploited to significantly reduce the complexity of this step. See for
instance the method proposed in [70] for solving sparse linear systems, which has been adapted in [71]
to derive an efficient encoding technique for LDPC codes, and in [72] to derive an efficient ML decoding
algorithm for LDPC codes over erasure channels (the situation is similar for OSD, where the least
reliable variable-nodes can be seen as being erased). Second, we use OSD to post-process the soft-
output of BP-RNN decoders. Since the binary cross-entropy loss function used to train these decoders
penalizes negative LLR values, corresponding to variable-nodes in error10, we expect such negative
LLR values to have a reduced amplitude, thus reducing the probability of error on the most reliable
variable-nodes. This is illustrated in Fig. 3.6, where we plot the cumulative distribution function
(CDF) of the a-posterori LLR values for the BP decoder, and for the BP-RNN decoder trained on the
error class 7-(5, 8, (5, 8)). Moreover, we also expect OSD post-processing to benefit from the diversity
brought by the use of multiple BP-RNN decoders, increasing the probability that at least one of these
decoders has at most w errors among the most-reliable variable-nodes.

3.3.3 Numerical results

We consider low-order (w = 0, 1) OSD post-processing applied to the BP(Itest = 250), the unspecial-
ized BP-RNN(Itest = 250) decoder [46], and the BP-RNN diversity D10(Itest = 25). Since the parallel
and the serial D10 exhibit similar FER performance, and OSD post-processing is only applied in case all

10Under the all-zero codeword assumption, since both the channel and the decoder are symmetric.

Page 82 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

3.0 3.5 4.0 4.5 5.0 5.5
SNR (dB)

10 4

10 3

10 2

FE
R

BP (Itest = 250)
BP-OSD-0 (Itest = 250)
BP-OSD-1 (Itest = 250)
BP-RNN[13]-OSD-1
(Itest = 250)

10, (Itest = 25)
10-OSD-0, (Itest = 25)
10-OSD-1, (Itest = 25)

D1-OSD-1 (Itest = 25)
ML

(a) Code-1

2.5 3.0 3.5 4.0 4.5 5.0
SNR (dB)

10 4

10 3

10 2

FE
R

BP (Itest = 250)
BP-OSD-0 (Itest = 250)
BP-OSD-1 (Itest = 250)
BP-RNN[13]-OSD-1
(Itest = 250)

10, (Itest = 25)
10-OSD-0, (Itest = 25)
10-OSD-1, (Itest = 25)

D1-OSD-1 (Itest = 25)
PB-NBP D1 [16]
ML [44]

(b) Code-2

Figure 3.7: FER results using OSD post-processing

the BP-RNN decoders composing D10 fail to find a codeword, it follows that the OSD post-processing
step yields similar performance when applied to either one of the parallel or serial architecture. We
simply refer to the corresponding decoder as D10-OSD, without mention of the diversity architecture.

Simulation results are presented in Fig. 3.7 for (a) Code-1, and (b) Code-2. For Code-1, first we
note that the BP-OSD-1 provides better performance than the unspecialized BP-RNN-OSD-1. Using
only the first decoder of our BP-RNN diversity (D1-OSD-1) outperforms the BP-OSD-1 by about
0.31 dB at FER = 10−4. Using all the BP-RNN diversity (D10-OSD-1) provides an extra gain of
0.12 dB, i.e., a total gain of about 0.43 dB with respect to BP-OSD-1. Furthermore, we observe that
D10-OSD-1 virtually achieves the ML decoding performance, where the latter is estimated according
to [44] (we also note that the OSD-3 decoder provides an accurate approximation of the ML decoding
performance). Finally, a gain of 0.52 dB can be observed for D10-OSD-0 with respect to BP-OSD-0.

For Code-2, we note that the unspecialized BP-RNN-OSD-1 provides slightly better performance
than the BP-OSD-1. D10-OSD-w outperforms BP-OSD-w, by 0.32 dB, for w = 0, and 0.72 dB, for
w = 1, at FER = 10−4. Using only the first decoder of our BP-RNN diversity, we observe that
D1-OSD-1 outperforms BP-OSD-1 by about 0.11 dB. For comparison purposes, we have also included
in Fig. 3.7b the FER performance of the Pruning Based Neural BP (PB-NBP) decoder from [49].
Several PB-NBP variants are presented in [49], we consider here the PB-NBP decoder D1 (see Fig. 6
in loc. cit.). It can be observed that D10-OSD-1 outperforms the PB-NBP decoder by 0.84 dB, our
decoder achieving a FER performance at only 0.63 dB from the ML decoding.

To further analyze the diversity obtained by D10-OSD-w, we compare it with a decoding diver-
sity combining BP and OSD, where the latter is applied periodically throughout the BP decoding
iterations [29]. Precisely, we consider BP(Itest = 250), and record the a-posteriori LLR values after
every 25 decoding iterations. In case a codeword is not found after 250 decoding iterations (BP fails),
we apply one OSD-w on each recorded set of a-posteriori values. Hence, the OSD-w is carried out
ten times in case of a decoding failure, as with D10-OSD-w. The ML rule (3.4) is used afterwards to
determine the final codeword.

We restrict our attention to Code-2 and, in order to further narrow the gap to ML decoding
performance, we consider OSD of order w = 1 and w = 2. The corresponding FER results are shown
in Fig. 3.8. We observe that the proposed D10-OSD-w performs better than BP(Itest = 250) with
OSD-w every 25 iterations, especially for w = 2, where it achieves a FER performance within 0.2 dB
from the ML decoding. Moreover, it should be noticed that using the parallel decoding architecture
from Section IV.B, the worst case latency of the D10 diversity corresponds to 25 decoding iterations,
while the worst case latency of BP(Itest = 250) is equal to 250 decoding iterations. Finally, we note
that D10-OSD-2 exhibits a gain of 1 dB with respect to BP(Itest = 250)-OSD-2.

©AI4CODE, October 2025 Page 83 of (104)

D3.2: Improved Learning-Based Decoders (Final)

2.5 3.0 3.5 4.0 4.5 5.0
SNR (dB)

10 4

10 3

10 2

FE
R

BP (Itest = 250)
BP-OSD-1 (Itest = 250)
BP-OSD-2 (Itest = 250)
BP-OSD-1 (Itest = 250), OSD-1
applied after all 25 iterations
BP-OSD-2 (Itest = 250), OSD-2
applied after all 25 iterations

10, (Itest = 25)
10-OSD-1, (Itest = 25)
10-OSD-2, (Itest = 25)

ML [44]

Figure 3.8: FER results using OSD post-processing of order w = 1 and w = 2 for Code-2

3.3.4 Discussion

Here, we addressed the problem of enhancing the BP-RNN performance at short code length, by
exploring two complementary approaches: (1) decoding diversity, from the previous section, and (2)
reliability-based post-processing. We showed that the proposed OSD post-processing step advanta-
geously leverage the bit-error rate optimization induced by the use of the cross-entropy loss function,
as well as the diversity brought by the use of multiple BP-RNN decoders. The proposed approach,
combining decoding diversity and low-order OSD post-processing, provides an efficient way to bridge
the gap to maximum-likelihood decoding (Fig. 3.7 and Fig. 3.8). It also opens new perspectives, as
new approaches may be considered for the optimization of NN-based decoders, not to deliver the best
possible bit or frame error rate performance, but merely an output that best suits the reliability-based
post-processing step. Following this line of research, the next section investigates a NN-based approach
to improve the OSD post-processing performance when applied to BP decoding.

3.4 Improving OSD Post-Processing for BP Decoding

As discussed in Section 3.1, we consider here the case when OSD post-processing is applied after the
standard BP decoder, with the aim of proposing an alternative solution (and therefore a different
performance/complexity trade-off) to the previous BP-RNN diversity based approach. For details we
refer to [RMSF23].

3.4.1 Accumulated and optimized LLR for OSD post-processing

We are interested in determining an LLR accumulated during BP iterations, as suited as possible
for OSD post-processing. To do so, we propose to compute the reliability of a variable-node n as a
weighted sum of the a posteriori LLRs of the BP decoder, across the I decoding iterations:

L̂(NS)
n =

I∑
i=0

w(i)L̂(i)
n , n ∈ [1, N] (3.5)

This equation is then modeled by a simple neuron. To create the neuron training set, we first
generate a set TBP of noisy codewords by considering a binary-input AWGN channel, with a BPSK
alphabet (±1) inputs, and a fixed noise variance σ2. TBP is then decoded by the BP. (Since the AWGN
channel and BP are symmetric, we may only consider the all-zero codeword.) We subsequently denote
by TBP-OSD the subset of noisy codewords of TBP for which the BP does not find a codeword after
I iterations. The sets L̂n :=

{
L̂

(0)
n , . . . , L̂

(I)
n
}
, (with n ∈ [1, N]) of each noisy codeword belonging to

Page 84 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

TBP-OSD then constitute the training set of the neuron. This training set allows the neuron to be
trained only in cases where the BP does not converge to a codeword.

To optimize the neural weights, we propose to utilize the focal loss, first introduced in [56], and
defined by:

FL
(
bn, L̂

(NS)
n

)
= −bnσ

(
L̂(NS)

n

)γ log
(
1 − σ

(
L̂(NS)

n

))
− (1 − bn)

(
1 − σ

(
L̂(NS)

n

))γ
log

(
σ
(
L̂(NS)

n

))
(3.6)

where bn is the expected value of bit n, σ(x) = (1+e−x)−1 is the sigmoid function converting the LLR
value into the probability that the decoded bit is equal to zero, and γ ≥ 0 is an an adjustable hyper-
parameter. By assuming that the all-zero codeword is transmitted, that is bn = 0 for n ∈ [1, N], (3.6)
simplifies to:

FL
(
L̂(NS)

n

)
= −

(
1 − σ

(
L̂(NS)

n

))γ
log

(
σ
(
L̂(NS)

n

))
(3.7)

The focal loss enables to focus the training on the hardest elements to classify in the training
set, by affecting them higher penalties. In our case, the most difficult vectors to classify are the L̂n
possessing L̂(i)

n with larges amplitudes and incorrect signs, since it will result in a L̂(NS)
n with the same

characteristics. Minimizing the focal loss therefore optimizes the weights to reduce the impact of such
L̂

(i)
n on the computation of L̂(NS)

n . Moreover, resulting L̂(NS)
n with large amplitudes and incorrect signs

induce erroneous bits, which will be potentially selected among the K most reliable ones during OSD.
Consequently, minimizing the focal loss reduces the probability of having erroneous bits among the K
the most reliable bits. L̂(NS) is thus effectively optimized for OSD post-processing. To the best of our
knowledge, it is the first time the focal loss [56] is used in decoding. We noticed that training an LLR
L̂(NS) with a focal cost γ > 0 outperforms the training with a binary cross entropy (that is γ = 0)
when OSD post-processing is applied.

3.4.2 Selecting sets of LLRs

In order to get closer to the ML decoding performance, we propose here a decoding method where
an OSD post-processing is applied after each LLRs set of an ordered list LZ of Z LLRs sets, with
Z ∈ [1, I + 2]. To construct this list, the complementarity of L̂(i) :=

{
L̂

(i)
1 , . . . , L̂

(i)
N

}
, i ∈ [0, I], and of

L̂(NS) with OSD is evaluated with the number of errors remaining after OSD post-processing.
We first generate a test set TBP-OSD, according to the procedure described in the previous section.

The decoding performance of the OSD post-processing is then assessed on TBP-OSD with each L̂(i) and
with L̂(NS). We denote by F (i) ⊂ TBP-OSD (resp. F (NS) ⊂ TBP-OSD) the subset of noisy words on which
L̂(i) (resp. L̂(NS)) leads to a failure during OSD-p decoding. Then, we recursively construct an ordered
list of LLRs sets, noted L. This list is initialized with L̂(NS), L =

{
L̂(NS)

}
, since L̂(NS) is optimized

for OSD post-processing. To add a new LLRs set L̂new to L, we propose to apply the following rule:

L̂new = arg min
L̂(i)∈{L̂(0),...,L̂(I)}\L

∣∣∣FL ∩ F (i)
∣∣∣ , (3.8)

where FL := F (NS) if L =
{

L̂(NS)
}

, FL := F (NS) ∩
(

∩L̂(i)∈L F (i)) otherwise. The above rule is applied
I + 1 times, until L contains all the LLRs sets. If the minimum argument of (3.8) is not unique, an
arbitrary choice is made among these values.

For Z ≤ I+2, LZ is defined as the sub-list of the Z first LLRs sets of L. LZ is thus an ordered list
of LLRs sets, representing Z complementary levels of reliability with respect to OSD post-processing.
As the OSD post-processing is applied to each element of LZ , we choose the most likely codeword
among the Z candidate codewords. In the following, we note this decoding method by BP-LZ-OSD-p.

Finally, we point out that neither the neural modeling of the weighted sum, nor the construction of
LZ , depend of the dimensions N and K of the considered LDPC code. As a result, the methodology
presented in this paper is reproducible for any LDPC code.

©AI4CODE, October 2025 Page 85 of (104)

D3.2: Improved Learning-Based Decoders (Final)

3.4.3 Complexity reduction

A main practical limitation for the OSD implementation is its decoding complexity [74], since a list
of
∑p

i=0
(K

i

)
candidate codewords has to be calculated at each OSD utilisation. Hence, the OSD post-

processing complexity tends to be especially costly for medium or long LDPC codes with K > 100
and for OSD-p with p ≥ 2. To address this issue, the number of candidate codewords is thus usually
limited by flipping only some of the most reliable variable-nodes.

As such, a procedure to compute a list of positions to be flipped during OSD-p was introduced
in [74]. This list is notably determined thanks to the computation of joint error probabilities for the
most reliable bits, and allows to process only the most probable candidate codewords. In [75], the most
reliable bits are partitioned into segments according to reliability thresholds depending of the received
noisy codeword. Only some of the segments are then selected for flipping. Both previously described
methods can require a high computational cost, due in particular to the threshold computations. The
authors of [76] propose for each noisy codeword to flip only the most reliable variable-nodes for which
soft values do not respect amplitude thresholds.

Here, we propose a strategy to reduce the computational complexity, which does not depend of
the noisy codeword. More precisely, we first put a limitation to the decoding complexity by restricting
our study to OSD-2. We then reduce the complexity of OSD-2, and by extension of BP-LZ-OSD-2,
by limiting the choices to a maximum of two errors according to their level of reliability. We thus
introduce two positions thresholds, T1 and T2, with T1 < T2. For simplicity, the most reliable bits are
also numbered from 0 to K in ascending order of reliability. For a linear code, we thus consider only
up to two flips between [0, T2], with at least one flip in [0, T1] in the case of two flips. Note that the bits
with sorting positions in the segment [T2 + 1,K] correspond to bits with the highest reliability, and
thus with the lowest probability of error. In addition, a couple of errors in [T1 +1, T2]2 is less probable
than a couple of errors in [0, T1]2 or in [0, T1] × [0, T2]. Therefore, the proposed method limits the
number of candidate codewords for OSD-2 by processing only error events with the highest probability
of occurrence. The number of candidate codewords NC is obtained with the following formula:

NC = 1 +
(
T2
1

)
+
(
T1
2

)
+ (T2 − T1)T1 (3.9)

The optimal choice of T1 and T2 is then determined by a complexity/performance evaluation thanks
to (3.9) . Indeed, for a fixed number of candidate codewords Nc, all the couples satisfying (3.9) are
determined. We then assessed the FER of BP-LZ-OSD-2 at a fixed SNR with each found couple. The
couple for which the reduced complexity BP-LZ-OSD-2 obtains the best FER performance is thus
selected.

Finally, note that for BP-LZ-OSD-p, the number of tested codewords when the BP fails is equal
to Z ×

∑p
i=0

(K
i

)
since Z OSD-p are performed. Therefore, the value of Z may also be limited for

complexity reasons as it directly impact the number of tested codewords and the number of system
resolutions.

3.4.4 Numerical results

Simulation settings

Three LDPC codes have been considered in our simulations. Their parameters are provided in Ta-
ble 3.4, where Rc := K/N denotes the coding rate, dv the variable-nodes degree, and dc the check-nodes
degree.

The number of BP decoding iterations was set to 25 for the CCSDS and Tanner codes, and to 10
for the MacKay code. The OSD-p post-processing was evaluated for p = 0, 1, 2 in order to limit the
number of tested combinations. Concerning the neuron introduced in Section 3.4.1, a set TBP-OSD of
10000 noisy codewords was generated to create the training set. The weights, all initialized to one,
were then optimized over 50 epochs, so that the focal loss converge towards a limit. Furthermore,

Page 86 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Table 3.4: LDPC codes parameters

N K Rc dv dc
CCSDS code [67] 128 64 0.5 3-5 8
Tanner code [77] 155 64 0.41 3 5

MacKay code [78] 1008 504 0.5 3 6

we assessed the Frame Error Rate (FER) of the OSD-p with L̂(NS) according to the hyper-parameter
γ, and we determined empirically γ = 10 as being a good choice to penalize the misclassified LLRs.
Finally, the neuron was trained for each SNR value ranging from 2.5 dB to 4.5 dB (resp. from 1.5 dB to
3.5 dB), with a step of 0.5 dB for the CCSDS code (resp. Tanner code/MacKay code). In addition, for
each SNR value, a test set TBP-OSD of 10000 noisy codewords was generated, and a list L was thereby
constructed according to the procedure described in section 3.4.2. We compare then the different
decoding strategies proposed in this paper for the three codes, in terms of FER. Reported SNR gains
are evaluated at a FER of 10−4.

The CCSDS code

On Fig. 3.9, the performance of CCSDS decoding for an OSD-p post processing with L̂(NS) is compared
with the performance of an OSD-p post processing using L̂(S) as a reliability measure. We observe
with L̂(NS) a slightly better performance than L̂(S) for p = 1 (similar for p = 0). For an order p = 2,
L̂(NS) allows to obtain a gain of 0.16 dB with respect to L̂(S). As a result, L̂(NS) becomes more and
more suited to OSD when the OSD order increases.

In the following, we consider a maximum budget of 3 OSD-p post-processing. To start with, the
set L3 is determined from L, as explained in section 3.4.2. The performance of OSD-p post-processing
with L3 and with L̂(NS) alone are illustrated in Fig. 3.10. We notice that applying an OSD-p after each
LLRs set of L3 provides an increasing gain with respect to the order p. Indeed, the gain is respectively
of 0.12 dB, 0.22 dB, and 0.27 dB for p = 0, 1, 2. In addition, it can be observed that BP-L3-OSD-2
achieves a FER performance at only 0.17 dB from ML decoding [73].

Finally, OSD-p post-processing is applied after a decoding diversity of 3 BP-RNNs, denoted D3.
The construction method of this decoding diversity is detailed in [79]. For each BP-RNN of D3, a
single neuron is optimized with the parameters described in section 3.4.4. Three L̂(NS) reliability are
thus computed and assessed with an OSD-p post-processing. An ML rule decides of the the final
codeword. We note this diversity approach by D3-L̂(NS)-OSD-p, and the corresponding results are
shown in Fig. 3.10. It can be observed that BP-L3-OSD-0 provides a slight improvement over D3-
L̂(NS)-OSD-0. The gain increases to 0.1 dB for p = 1, and then to 0.12 dB for p = 2. As a result, using
the BP decoder alone and constructing a list of complementary LLRs sets is a better strategy in term
of FER performance with OSD-p post-processing.

The Tanner code

The simulation results obtained with the Tanner code are presented on Fig. 3.11, with the same
methodology. The decoding by BP-L3-OSD-0 provides a gain of 0.16 dB with respect to BP-L̂(NS)-
OSD-0. This gain remains similar when the OSD order is 1 or 2. Furthermore, we observe that
BP-L3-OSD-2 nearly reaches the ML decoding performance.

For this code, we also consider a decoder BP-L3-OSD-2 operating with a complexity reduced by
50%, as described in Section 3.4.3. This complexity reduction amounts to NC = 3121 instead of
the BP-L3-OSD-2 3 ×

∑2
i=0

(64
i

)
= 6243 codewords tested at each BP decoding failure. An optimal

threshold couple (T1, T2) for BP-L3-OSD-2 is thus determined for each SNR value. The corresponding
performance is illustrated in Fig. 3.11. We notice that the complexity reduction of 50% induces a
degradation of only 0.08 dB with respect to BP-L3-OSD-2 with no reduction.

©AI4CODE, October 2025 Page 87 of (104)

D3.2: Improved Learning-Based Decoders (Final)

2.5 3.0 3.5 4.0 4.5
SNR (dB)

10 5

10 4

10 3

10 2

FE
R

BP(I = 25)
BP-L(S)-OSD-0
BP-L(NS)-OSD-0
BP-L(S)-OSD-1
BP-L(NS)-OSD-1
BP-L(S)-OSD-2
BP-L(NS)-OSD-2
ML[21]

Figure 3.9: FER for CCSDS code, L̂(S) vs L̂(NS).

2.5 3.0 3.5 4.0 4.5
SNR (dB)

10 5

10 4

10 3

10 2

FE
R

BP (I = 25)
BP-L(NS)-OSD-0

3[13]-L(NS)-OSD-0
BP- 3-OSD-0
BP-L(NS)-OSD-1

3[13]-L(NS)-OSD-1
BP- 3-OSD-1
BP-L(NS)-OSD-2

3[13]-L(NS)-OSD-2
BP- 3-OSD-2
ML[21]

Figure 3.10: FER for CCSDS code.

1.5 2.0 2.5 3.0 3.5
SNR (dB)

10 5

10 4

10 3

10 2

FE
R

BP (I = 25)
BP-L(NS)-OSD-0
BP- 3-OSD-0
BP-L(NS)-OSD-1
BP- 3-OSD-1
BP-L(NS)-OSD-2
BP- 3-OSD-2
BP- 3-OSD2,
(Complexity = 50%)
ML[21]

Figure 3.11: FER for Tanner code.

1.50 1.75 2.00 2.25 2.50 2.75 3.00
SNR (dB)

10 4

10 3

10 2

10 1

100

FE
R

BP(I = 10)
BP-L(NS)-OSD-0
BP- 3-OSD-0
BP-L(NS)-OSD-1
BP- 3-OSD-1
BP-L(NS)-OSD-2
BP- 3-OSD-2
BP- 3-OSD-2,
(Complexity = 50%)

Figure 3.12: FER for MacKay code.

The MacKay code (extension to longer code)

Fig. 3.12 shows the simulations results for the MacKay code. This code possesses higher dimensions
N and K than both previously discussed codes, but as explained in Section 3.4.2, the methodology
is reproducible. It can be observed that BP-L3-OSD-p exhibits small improvements with respect to
BP-L̂(NS)-OSD-p, up to 0.1 dB for an order p = 2.

However, since K = 504, Nc = 381783 candidate codewords are computed at each BP decoding
failure for BP-L3-OSD-2. Consequently, a complexity reduction becomes mandatory for the MacKay
code. As such, the decoder BP-L3-OSD-2 with a complexity reduction of 50% is assessed. An optimal
threshold couple is hence calculated for each SNR value. We observe that the decoder BP-L3-OSD-2
with a complexity reduction of 50% tends to be almost as efficient than the standard BP-L3-OSD-2
decoder.

3.4.5 Discussion

In this section, we addressed the problem of improving the OSD post-processing performance when
applied to BP decoding. To this end, the soft input of the OSD post-processing step was defined as a
weighted sum of a posteriori LLRs across the BP decoding iterations, which was conveniently modeled
and optimized by a simple neural approach. We also proposed the use of the focal loss function to
optimize the neural weights, shown to be better suited than the binary cross-entropy loss function
for this specific task. Following a diversity approach, comparable to the one proposed in Section 3.3,

Page 88 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

we considered a multiple OSD post-processing strategy, where each OSD processes either the above
weighted (neural) sum, or the a posteriori LLRs of the BP at some specific decoding iterations. Finally,
we proposed a method to reduce the number of candidate codewords in the OSD post-processing step,
and showed that the proposed approach is scalable for long LDPC codes and, depending on the code
length, it allows approaching or covering a significant part of the gap to maximum-likelihood decoding.

©AI4CODE, October 2025 Page 89 of (104)

D3.2: Improved Learning-Based Decoders (Final)

4
Learned message passing receivers for multi-user MIMO
communications

4.1 Motivation

This final contribution addresses multi-user MIMO (MU-MIMO) systems with multiple antennas at
both transmission and reception. It is well-known that optimal multi-user detection becomes rapidly
untractable due to exponential scaling in the number of active users, transmit antennas, and bits per
symbol. Fortunately, the model structure induced by this type of communication can be represented
as a factor graph, enabling the use of low-complexity message-passing algorithms based on variational
inference [80], such as Vector-Expectation-Propagation (VEP) [81] or Approximate-Message-Passing
(AMP) [82], for detecting the transmitted symbols. These algorithms are iterative and converge
towards the decision of the optimal detector. In addition, being soft-input soft-output detectors
by nature, they can be be used in combination with a soft-input soft-output channel decoder to
further improve detection performance by exploiting the turbo principle and iterating multiple times
between the approximate detector and the decoder. However the derivation of the VEP and AMP
Bayesian detectors relies on specific assumptions regarding the distribution of the transmitted signals,
which are not always valid in practice. In realistic transmission scenarios, these assumptions may
be violated, motivating the use of neural networks and deep learning techniques. Our contribution
is twofold. First, we unfold the turbo-iterations to learn certain scalar parameters for which we
don’t have an analytic expression. The goal is to achieve an optimal balance between a posteriori
and extrinsic information in the soft messages exchanged between the Bayesian detector and the
channel decoder throughout the iterative turbo process. We then demonstrate how memory can
be incorporated across iterations by establishing a parallel with GRU-based models. Second, we
investigate the use of neural networks on the graphs induced by communication models. A class
of neural networks that naturally fits this framework is the message-passing graph neural network
(MPGNN). This emerging architecture is gaining increasing attention in deep learning for physical-
layer applications. We demonstrate that tailoring this architecture to the specific properties of the
underlying communication model can simultaneously reduce complexity and improve performance.

Related publications. The above contributions have been published in:

[MPMC24a] A. Michon, C. Poulliat, A. Mekhiche, A. M. Cipriano, “Extrinsic Versus APP Infor-
mation Feedback in Turbo VEP MU-MIMO Receivers: Optimization Via Deep Unfolding”, in
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Seoul, Korea, Apr. 2024.

[MPC24b] A. Michon, C. Poulliat, and A. M. Cipriano, “Learning Modified Gated Recurrent Units
for Information Feedback in Unfolded Turbo VEP MU-MIMO Receivers”, in Proc. IEEE Inter-
national Conference on Communications (ICC), Denver, CO, USA, June 2024.

[MPC25b] A. Michon, C. Poulliat, and A. M. Cipriano, “Message Passing GNN for Graph Based
Wireless Communication Models”, in Proc. IEEE International Conference on Machine Learn-
ing for Communication and Networking (ICMLCN), Barcelona, Spain, May 2025.

Since multi-user MIMO communications were not the central project of the project, we only provide
a short executive summary of each of the above contributions in the following. The interested reader
is refered to the above papers for more details, results, and discussions.

Page 90 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

3.1 Information scaling and damping without memory

3.1.1 VEP based memoryless Unfolding

In this section we use the toy example of a turbo receiver based on VEP in order to
present a first version of unfolding based on DUIDD [Wie+22]. Similar approach could be
applied to a turbo receiver based on AMP. We define two kinds of learnable parameters.
Scaling factors for the estimation of learned LLRs were introduced in the DUIDD approach
[Wie+22] for the case of LMMSE SISO detection:

ω̂
i
det = ωi

detω
APP,i
det → εi

detω̂
i→1
dec ,

ω̂
i
dec = ωi

decω
APP,i
dec → εi

decω̂
i
det.

(3.1)

The lower script det refers to information coming out of the detector, dec to information
coming out of the decoder and upper script APP refers to APP information.

Figure 3.2 illustrates an unfolded turbo-VEP. First, it should be noted that VEP
itself is not unfolded. There is a single learned damping factor ε̃i per turbo-iteration. It
would have been possible to define one damping per auto and turbo iteration as ε̃i =
{ε̃i

1, ..., ε̃
i
T }. We did not observe performance improvement with this method. Other

approaches and learnable parameters could also be proposed, a few of them are discussed
here after. In [He+20], a variable is introduced to supposedly deal with the approximation
of high order terms which lead to a loss of orthogonality within Orthogonal Approximate
Message Passing (OAMP). This parameter is not necessary since we do not have such
approximation with VEP.

Figure 3.2: Unfolded Turbo VEP

The learnable parameter set per turbo iteration can be summarized as

ϑi = {ε̃i, ωi
det, ω

i
dec, ε

i
det, ε

i
dec}

.
The total number of learnable variables is 5 ↑ I, where I is the maximum number of

turbo-iterations.

3.1.2 Simulation on memoryless deep unfolding

In this subsection, we investigate the unfolded algorithm where only the damping and
scaling factors are learned. We compare the unfolded VEP to standard implementation and

73

Figure 4.1: Unfolded Turbo VEP

4.2 Leveraging learning to balance extrinsic vs APP information
feedback in Turbo VEP MU-MIMO receivers

Multi-User Multiple-Input Multiple-Output (MU-MIMO) communication systems with iterative de-
tection and decoding face a fundamental challenge: determining the optimal balance between extrinsic
and a posteriori (APP) information feedback in turbo receivers. This optimization problem becomes
particularly complex in Vector Expectation Propagation based receivers, which operate as doubly
iterative algorithms with both auto-iterations (within the detector) and turbo-iterations (between
detector and decoder). We address this challenge through two distinct deep learning approaches.

4.2.1 Deep Unfolding with Learnable Scaling Factors

The first approach employs classical deep unfolding to jointly optimize hyperparameters in turbo VEP
receivers. As illustrated in Fig. 4.1, the method introduces learnable scaling factors (α, β) for each
turbo-iteration, transforming the information exchange according to:

λ̂l
det = αdet,lλ

APP,l
det − βdet,lλ̂

l−1
dec (4.1)

λ̂l
dec = αdec,lλ

APP,l
dec − βdec,lλ̂

l
det (4.2)

This parameterization allows the network to learn the optimal trade-off between extrinsic (α →
0, β → 1) and APP (α → 1, β → 0) information for each iteration through gradient descent optimiza-
tion using Binary Cross Entropy loss.

4.2.2 Modified Gated Recurrent Unit Architecture

The second approach builds upon the previous one, but with the objective of adding introducing mem-
ory across turbo-iterations in the scaling of the soft information. The general principle is illustrated
in Fig. 4.2. The main idea is to calculate the updated soft information as an exponential moving
average of the new LLR and the one calculated at the previous iteration. By recognizing that such
a sequential operation has much in common with the operation implemented by a standard GRU
cell, we have proposed a simple, modified GRU architecture having only four scalar learnable param-
eters to scale soft-information exchange across turbo iterations. The resulting, hardware-efficient and
numerically-optimized modified GRU cell (extGRUv2) is summarized in Table 4.1.

©AI4CODE, October 2025 Page 91 of (104)

D3.2: Improved Learning-Based Decoders (Final)

3.2 Gated Recurrent Units for unfolded turbo receivers

Following the preceding approach, it appears that the introduction of learnable param-
eters for the computation of the extrinsic LLRs aims to scale the a posteriori and the a
priori information of either the decoder or the detector. Our objective is to add memory
to the system which would dampen the estimated LLRs from the current turbo-iteration
with the ones from the previous turbo-iteration. This can be written as follows: given a
likelihood ratio ωi → R at turbo iteration i and a damping factor s → [0., 1.] , is it possible
to find a value for s which further improves the performance of our receiver by setting
ωi ↑ (1↓ s)ωi + sωi→1 ?

In the following section, we give a quick overview of what a GRU is and how to adapt
it to extrinsic LLRs computation. A major point is that we will not consider the addition
of one dense layer to increase the dimensions before the GRU and one for the estimation
at the output of the model. This is a commonly used strategy in order to apply machine
learning models for communications. Here, inference and estimation are directly done on
the LLRs. Thanks to this, GRU equations can be more easily interpreted. In addition, it
results in a fair increase in complexity compared to the non-learned algorithm.

Figure 3.4 depicts this idea of adding memory across turbo-iterations to scale the LLRs.

Figure 3.4: Usage of memory across turbo iterations to scale the information

3.2.1 Gated recurrent units on scalar quantities

GRU are composed of two types of gates [Cho+14]: one to reset the contribution of
the previous sequences (the reset gate ri in eq. (3.3)) and one to update the current states
(the update gate zi in eq. (3.2)). In this context, the sequences are the LLRs at the input
of the "LLR scaling" block of figure 3.4 taken individually (meaning that the input is a
scalar). For example, the "LLR scaling" after the detector at turbo-iteration i takes ωAPP,i

det

as input from the current sequence, and ωAPP,i→1
det as input from the previous sequence. So

if we wanted to directly implement the GRU presented in Section 1.3.4.4 with the LLRs
as inputs, every learnable Wp, Up and bp, with p → {z, r, h} would be scalars. GRU can
be formally described by the following set of update equations:

zi = ε(ωAPP,i
det wz + hi→1uz + bz) (3.2)

ri = ε(ωAPP,i
det wr + hi→1ur + br) (3.3)

ĥi = ϑ(ωAPP,i
det wh + (ri ↔ hi→1)Uh + bh) (3.4)

hi = zi ↔ hi→1 + (1↓ zi)↔ ĥi (3.5)

where ε(x) = sigmoid(x) = 1
1+e→x and ϑ(x) = tanh(x) = ex→e→x

ex+e→x . In this case, every
variable is a scalar. The state hi would be the estimated likelihood ω̂i

det. Again zi is the

77

Figure 4.2: Introducing memory to scale soft information exchange across iterations

and belongs to R+. If wz is negative, then LLRs of high
magnitude will push zl

n to zero. And for low magnitudes,
both sides will act as a tanh(.) which implies that it will
scale distributions. Note that x tanh(x) = LiSHT (x) is an
activation function proposed in [27], which deals with the
dying gradient problematic of tanh(x) in deep networks. This
is not directly an issue in our model because it is relatively
small, but could be useful for future works. Finally, we decided
to use the hard sigmoid function both for its better hardware
implementation and the fact that it is exactly equal to zero
for sufficiently low values. ω̄(x) is equal to 0 if x → ↑2.5, or
equal to 1 if x ↓ 2.5 or equal to 0.2x+0.5 if ↑2.5 < x < 2.5.

Algorithm 3 presents the second improved version of
extGRU. We observed that initializing wz as -1 and uz as
0 offered the best performance for training this layer.

Algorithm 3: extGRU v2

Input: εAPP,l, εapriori,l, hl→1

zl = ω̄(εAPP,lϑ(εAPP,l)wz + ϑ→1(hl→1)hl→1uz)
ĥl = ϑ(εAPP,lwh ↑ εapriori,luh)
h = (1↑ zl)ĥl + zlhl→1

Algorithm 4 summarizes our proposed doubly iterative
algorithm for the n-th bit of user k. For brevity of the
notations, we drop the notation (ck,n) in every ε and
subscript k, n in !k,n, for probabilities p̂l,0 = p̂l(ck,n = 0).
We choose not to add subscript n since it would be on
every variable. In Algorithm 4, DET (.) is the detector
(e.g. AMP, VEP, LMMSE...). ϖl is a learnable damping
coefficient used as the ϖ in Algorithm 1. DEC(.) is the
SISO channel decoder. Also it is coherent to compute
only p̂l,0 with the layer and then p̂l,1 = 1 ↑ p̂l,0. If
we wanted to compute p̂l,1 with the GRU, we would
compute a hl,bis = GRU l,bis(↑εAPP,l,↑εapriori,l, hl→1,bis)
and it can easily be shown by induction
that GRU l,bis(↑εAPP,l,↑εapriori,l, hl→1,bis) =
↑GRU l(εAPP,l, εapriori,l, hl→1). So the relation
p̂l,1

dec =
1→hl

dec

2 = 1↑ p̂l,0 holds.

IV. SIMULATION RESULTS

We now evaluate the performance of our proposed scheme.
The training of the network uses the stochastic gradient
descent method in conjunction with the Adam optimizer. A
learning rate of 0.001, a batch size of 32 elements and the
Binary Cross Entropy (BCE) loss between the LLRs from the
last turbo iteration and the transmitted codeword are used.

In our setting, we do not learn the parameters of the codes.
The simulations were done using TensorFlow and Sionna [28].
The modulation is a gray-mapped 16-QAM. We also use 5G
LDPC codes from Sionna [28] with a codeword size of 2048
bits and coding rate R = 0.5. We perform 6 inner LDPC
decoding iterations per turbo-iteration. The decoder’s states
are saved and used for the next turbo-iteration. We use a low-
complexity decoding algorithm with a min-sum criterion. We

Algorithm 4: GRU aided doubly iterative algorithm
Input: H, y, ω, ϱ
Initialization: Set ω̂

→1

dec = 0, h→1
dec = 0

for l = 0..L do
pl
0(xk) =

∏J
j=1 exp

(
ϱ→1

j (ς)ε̂l→1
dec (ck,j)

)

.
ql(xk = ς | y) = DET (p0(xk), ϖl,y,H)
.
εAPP,l

det = log
(∑

ω→!↑ ql(xk=ω|y)∑
ω→!+ ql(xk=ω|y)

)

if l = 0 then
hl

det = ϑ(
εAP P,l

det

2)

ε̂l
det = εAPP,l

det

else
εapriori,l

det = ε̂l→1
dec

hl
det = GRU l

det(
εAP P,l

det

2 ,
εapriori,l

det

2 , hl→1
det)

p̂l,0
det =

1+hl
det

2

p̂l,1
det = 1↑ p̂l,0

det

ε̂l
det = log(p̂l,0

det)↑ log(p̂l,1
det)

if l < L then
εAPP,l

dec = DEC(ε̂l
det)

εapriori,l
det = ε̂l

det

hl
dec = GRU l

dec(
εAP P

dec

2 ,
εapriori

dec

2 , hl→1
dec)

p̂l,0
dec =

1+hl
dec

2

p̂l,1
dec = 1↑ p̂l,0

dec

ε̂l
dec = log(p̂l,0

dec)↑ log(p̂l,1
dec)

else
ĉk,n = DECL(ε̂l

det(ck,n))

also use the max-log approximation [10] of eq. (2) to have
similar type of messages.

Minimal values for LLRs and probabilities are respectively
φε = 8 and φ = e→ϑε . We choose to set the amount of auto-
iterations to T = 3. Damping factors for VEP are equal to
one. These are also the initial values for the learned damping
coefficients of the detector.

Every simulation uses perfect Channel State Information
(CSI). We consider K = 4 single-antenna users and a BS with
Nr = 4 antennas. We simulate an ergodic Rayleigh MIMO
channel with i.i.d coefficients hr

k ↔ CN (0, 1), and the signal-
to-noise ratio (SNR) is defined as SNR =

E||x||22
E||n||22

. In figure 2,
we observe that APP feedback outperforms extrinsic feedback.
Hence, εdec and εdet are initialized to one, ϑdec and ϑdet to
zero. Both subfigures in Figure 2 compare extrinsic, posterior,
DUIDD-inspired information exchanges referred as learned-
feedback and our two versions of extGRU. Figure 2a presents
the results for an LMMSE detection and 2b presents the
results for a VEP detection. The learned scheme consistently
outperforms the non-learned implementations and the first
version of extGRU has the same performance as the learned
feedbacks. ExtGRU v2 outperforms both the first version and

2024 IEEE International Conference on Communications (ICC): SAC Machine Learning for Communications and Networking Track

3577
Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on October 17,2025 at 15:37:27 UTC from IEEE Xplore. Restrictions apply.

Table 4.1: Our extGRU v2 cell to scale soft-information (learnable parameters (w∗, u∗) are scalar)

4.2.3 Performance comparison

An experimental validation has been carried out by simulating a MU-MIMO system with K = 4
single-antenna users, a BS equipped with Nr = 4 antennas, on a Rayleigh fading channel with perfect
CSI. The simulations were done using TensorFlow and Sionna. Transmission uses a gray-mapped
16-QAM and the rate-1/2 5G-NR LDPC codes from Sionna with a codeword size of 2048 bits. We
use a min-sum decoder and perform 6 inner LDPC decoding iterations per turbo-iteration. The
number of inner VEP iterations is set to 3, and the number of global turbo-iterations is set to 5.
The results are shown in Fig. 4.3. The two main take-away conclusions are that both deep learning
approaches outperform non-learned baselines, and the extGRU v2 achieves the highest performance.
In particular, the GRU-based approach uniquely captures temporal dependencies between iterations,
enabling adaptive damping based on convergence history and context-aware information weighting.
It also exhibited improved stability in numerical computations. As for the computational complexity,
deep unfolding without memory results in minimal overhead, with only 5 parameters per turbo-
iteration. The extGRUv2 requires about twice more parameters but offers enhanced adaptability.

Both approaches clearly demonstrate that learned, adaptive information exchange substantially
outperforms fixed strategies in MU-MIMO turbo receivers.

4.3 Message-passing Graph Neural Networks for graph-based wire-
less communications

We have seen that wireless MU-MIMO communication pose significant detection challenges due to their
complex dependency structures. While these systems can be effectively represented as factor graphs,
traditional detection algorithms face a fundamental trade-off between computational complexity and
performance. First, the performance of graph-based detection algorithms varies significantly with the
underlying graph structure (sparse vs. fully connected). Also, message-passing algorithms like VEP
and (Vector/Orthogonal) AMP require iterative computations that scale poorly with system size.
Effectively incorporating Channel State Information (CSI) and soft information from detectors into

Page 92 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

	�� 	�

��
�
 ��� ��
 ��� ��

��
��������

��(

��(

��(�

��(�

��(�

��
�

�'%# "$ ���������!
�����������!
���#"����������!
�'%���
�'%����&�

(a) LMMSE detection

	�� 	�

��
�
 ��� ��
 ��� ��

��
��������

��(

��(

��(�

��(�

��(�

��
�

�'%# "$ ���������!
�����������!
���#"����������!
�'%���
�'%����&�

(b) VEP detection with 3 auto-iterations

Fig. 2: BER versus SNR for a MU-MIMO system with K =
Nr = 4 for a Rayleigh fading channel and perfect CSI. The
number of turbo-iterations is set to 5

the learned feedback. Finally, non-learned APP feedback VEP
is around 0.5dB lower than LMMSE, but we see that the
extGRU v2 MMSE bridges this gap.

V. CONCLUSION AND PERSPECTIVES

We presented a layer for unfolded iterative algorithms
inspired by natural language processing machine learning
models. This layer computes a scaled extrinsic distribution
and dampens it with memory from the previous turbo-iteration.
Our results show that it outperforms other unfolded algorithms
both for LMMSE or VEP algorithms. Future work will explic-
itly analyze the values of the learned coefficient and extend it
to low-complexity scalar algorithms such as AMP. Also, we
plan to evaluate if casting the LLRs in the feature domain
before our layer (and using learnable matrices and vectors
instead of scalars) further improves the performance.

REFERENCES

[1] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message
passing,” in Proc IEEE ISIT, 2017, pp. 1588–1592.

[2] J. Ma and L. Ping, “Orthogonal amp,” IEEE Access, vol. 5, pp. 2020–
2033, 2017.

[3] T. Minka, “Divergence measures and message passing,” Microsoft
Research, Tech. Rep. MSR-TR-2005-173, 2005.

[4] M. Senst and G. Ascheid, “How the framework of expectation propa-
gation yields an iterative IC-LMMSE MIMO receiver,” in Proc. IEEE
GLOBECOM conf., 2011, pp. 1–6.

[5] I. Santos and J. J. Murillo-Fuentes, “Self and turbo iterations for mimo
receivers and large-scale systems,” IEEE Wirel. Commun. Letters, vol. 8,
no. 4, pp. 1095–1098, 2019.

[6] C. Douillard, M. Jézéquel, C. Berrou, D. Electronique, A. Picart, P. Di-
dier, and A. Glavieux, “Iterative correction of intersymbol interference:
turbo-equalization,” European Trans. Telecommun., vol. 6, no. 5, pp.
507–511, 1995.

[7] B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-
antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp. 389–399,
2003.

[8] M. Tuchler, R. Koetter, and A. Singer, “Turbo equalization: principles
and new results,” IEEE Trans. Commun., vol. 50, no. 5, pp. 754–767,
2002.

[9] M. Witzke, S. Baro, F. Schreckenbach, and J. Hagenauer, “Iterative
detection of mimo signals with linear detectors,” in Proc. Asilomar
Conf., vol. 1, 2002, pp. 289–293 vol.1.

[10] R. Wiesmayr, C. Dick, J. Hoydis, and C. Studer, “Duidd: Deep-unfolded
interleaved detection and decoding for mimo wireless systems,” 2022.
[Online]. Available: https://arxiv.org/abs/2212.07816

[11] J. Zhang, C.-K. Wen, and S. Jin, “Adaptive mimo detector based on
hypernetwork: Design, simulation, and experimental test,” IEEE Journal
on Selected Areas in Communications, vol. 40, no. 1, pp. 65–81, 2022.

[12] S. Şahin, C. Poulliat, A. M. Cipriano, and M.-L. Boucheret, “Doubly
iterative turbo equalization: Optimization through deep unfolding,” in
Proc. IEEE PIMRC conf., 2019, pp. 1–6.

[13] M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep net-
works for sparse linear inverse problems,” IEEE Trans. Signal Process.,
vol. 65, no. 16, pp. 4293–4308, aug 2017.

[14] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for
MIMO detection,” IEEE Trans. Signal Process., vol. 68, pp. 1702–1715,
2020.

[15] M. Honkala, D. Korpi, and J. M. J. Huttunen, “Deeprx: Fully convo-
lutional deep learning receiver,” IEEE Trans. Wirel. Commun., vol. 20,
no. 6, pp. 3925–3940, 2021.

[16] K. Pratik, B. D. Rao, and M. Welling, “RE-MIMO: Recurrent and
permutation equivariant neural MIMO detection,” IEEE Trans. Signal
Process., vol. 69, pp. 459–473, 2021.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: https://arxiv.org/pdf/1706.03762.pdf

[18] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based mimo
communications,” arXiv preprint arXiv:1707.07980, 2017.

[19] S. Cammerer, J. Hoydis, F. A. Aoudia, and A. Keller, “Graph neural
networks for channel decoding,” in IEEE GC Wkshps., 2022, pp. 486–
491.

[20] A. Kosasih, V. Onasis, W. Hardjawana, V. Miloslavskaya, V. Andrean,
J.-S. Leuy, and B. Vucetic, “Graph neural network aided expectation
propagation detector for mu-mimo systems,” 2022. [Online]. Available:
https://arxiv.org/abs/2201.03731

[21] A. Kosasih, V. Onasis, V. Miloslavskaya, W. Hardjawana, V. Andrean,
and B. Vucetic, “Graph neural network aided mu-mimo detectors,” 2022.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[23] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[24] G.-B. Zhou, J. Wu, C.-L. Zhang, and Z.-H. Zhou, “Minimal gated unit
for recurrent neural networks,” International Journal of Automation and
Computing, vol. 13, no. 3, pp. 226–234, 2016.

[25] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light gated
recurrent units for speech recognition,” IEEE Trans. Emerg. Topics
Comput., vol. 2, no. 2, pp. 92–102, Apr 2018.

[26] M. H. E. Ali, M. L. Rabeh, S. Hekal, and A. N. Abbas, “Deep learning
gated recurrent neural network-based channel state estimator for ofdm
wireless communication systems,” IEEE Access, vol. 10, pp. 69 312–
69 322, 2022.

[27] S. K. Roy, S. Manna, S. R. Dubey, and B. B. Chaudhuri, “Lisht: Non-
parametric linearly scaled hyperbolic tangent activation function for
neural networks,” in Proc. CVIP conf. Springer, 2022, pp. 462–476.

[28] J. Hoydis, S. Cammerer, F. Ait Aoudia, A. Vem, N. Binder, G. Marcus,
and A. Keller, “Sionna: An open-source library for next-generation
physical layer research,” arXiv preprint, Mar. 2022.

2024 IEEE International Conference on Communications (ICC): SAC Machine Learning for Communications and Networking Track

3578
Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on October 17,2025 at 15:37:27 UTC from IEEE Xplore. Restrictions apply.

Figure 4.3: BER versus SNR for a MU-MIMO system with K = 4 single-antenna users, a BS equipped
with Nr = 4 antennas, on a Rayleigh fading channel with perfect CSI. The number of inner VEP
iterations is set to 3, and the number of global turbo-iterations is set to 5

neural network architectures remains non-trivial. Therefore, there is a growing interest in investigat-
ing the use of Graph Neural Networks (GNN)-based detectors to improve performance and reduce
complexity. A particularly promising approach in this context is message-passing GNN [83, 84]. The
motivation behind using a message-passing GNN is that both AMP and VEP approximate the joint
posterior probability distribution of the transmitted symbols by the product of independent Gaussian
distributions. If the variables are still correlated after the factor node update, then the hypothesis of
independent Gaussian distributions does not hold, and a performance degradation results.

Different form of message-passing GNN have been proposed in the literature, building on two
distinct graphical representation of the transmission model, depicted in Fig. 4.4. The first one (a)
adopts a transformed bipartite graphs [85] whereas the second one (b) relies on factor graphs [86].

4.3.1 GEPnet: Bipartite Graph Approach

This architecture operates on a transformed graph based on HT H ∈ RK×K , focusing exclusively on
variable node interactions (messages between users):

• Message Passing:
m

(n)
j→k = ψ([u(n−1)

k , u
(n−1)
j , ej→k]) (4.3)

where ej→k = [hT
k hj , σ

2] encodes channel correlation and noise variance.

©AI4CODE, October 2025 Page 93 of (104)

D3.2: Improved Learning-Based Decoders (Final)

.

.

(a) GNN module Bipartite Graph

.

.

(b) FGNN module Factor Graph

Fig. 1: Detailed view of embeddings available on the graph

with FGNN, and in pink are the ones combined with GEPnet.
The curves in green are for the FGNN module and in red are
the FGNN-CSI.

Regarding complexity, in practice, we use the same di-
mension parameters for every ω, ωV , ωF and for ε, εV , εF .
Since FGNNs use two node updates, they are almost twice as
complex as GNN. For example, considering a fully connected
graph with K = L, FGNNs are twice as complex as GNNs.
But if K →= L then the number of multiplications slightly
changes between the variable node update and the factor node
update.

The training of the network uses the stochastic gradient
descent method in conjunction with the Adam optimizer. We
use the Binary Cross Entropy (BCE) loss between LLRs
obtained from the estimated symbol and the transmitted bits.
The network is trained during 500 epochs. In each epoch, we
iterate 100 times over 2 batches of 512 bits to simulate the
transmission. We observed that the use of small batches brings
better performance. A learning rate of 0.001 is applied. To test
the final Bit Error Rate (BER), the model with the best loss is
loaded. The MLPs ε have 3 layers, Nω1 = d, Nω2 = Nω1/2
and Nω3

= Nu with d = 64, Nu = 8 and ReLU activation
functions. dout also has size 64. The damping factor of each
auto-iteration is also learned.

The amount of iterations in VEP is T = 3. Without any
iterative detector the amount of iteration inside the GNN is
equal to N = 10, and with VEP it is set to N = 3 to have an
equivalent amount of iterations in total.

1) Uplink MU-MIMO: Figure 2 gives the BER of a MU-
MIMO communication with 4 transmitting antennas and 4 an-
tennas at the base station. The channel is an ergodic Rayleigh
MIMO channel with i.i.d coefficients hi,j ↑ CN (0, 1).

The FGNN without any CSI cannot detect the symbols. The
red curve shows that if we use CSI then the neural network
can detect symbols but hits a floor around an error rate of
0.5 ↓ 10→2. The joint use with a SISO detector breaks this

floor, but we see that the neural networks based on the factor
graph FGNN-MMSE and FGNN-VEP is unable to outperform
VEP. The GEPnet approach reaches better performance, but
its use with MMSE and VEP gives almost the same results.
This could be expected since we use QPSK on a 4↓4 system.
Simulations with a 16 ↓ 16 MIMO system with 16 ↔ QAM
modulation showed better results for GEPnet-VEP compared
to GEPnet-MMSE.

 �
 �� �
 ��
��������

��

�� 	

�� �

�� �

�� �

�

�

���

�
��������
����
��������
��������

������
�
�
��������

�
������
�

Fig. 2: BER comparison for 4↓ 4 MU-MIMO with Rayleigh
channel and perfect CSI with QPSK modulation

2) Channel with ISI: Figure 3 gives the BER of K = 64
symbols over the Proakis C channel with channel impulse
response [0.227, 0.460, 0.688, 0.460, 0.227]. Neural networks
combined with VEP did not bring any improvement compared
to their use with MMSE so we removed them on this figure for
visibility. The Maximum Likelihood (ML) bound in yellow is
also added to highlight the theoretical limitation. The purple
curve "GEPnet-CSI" correspond to the module in 2 without
any prior SISO detection and only the information from the

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on October 18,2025 at 09:05:13 UTC from IEEE Xplore. Restrictions apply.

Figure 4.4: Two different graphical models of the MU-MIMO transmission

• Node Update: Employs Gated Recurrent Units (GRU) followed by dense layers:

g
(n)
k = GRU(g(n−1)

k , [
⊕

j∈N (k)
m

(n)
j→k, ek]) (4.4)

u
(n)
k = Du(g(n)

k) (4.5)

• Integration with SISO Detectors: Incorporates prior information from VEP through node
attributes et

k = [µt
l̃→k

, σt
l̃→k

].

The reader is referred to [MPC25b] for the detailed description of all functions and messages involved
here as well as in the next subsection.

4.3.2 FGNN: Factor Graph Neural Network

This approach directly operates on the original factor graph defined by the channel transmission
matrix, with distinct variable nodes (VN) and factor nodes (FN). Message passing rules obey the
following generic dual update structure:

m
(n)
l→k = ψV ([f (t,n−1)

l , u
(t,n−1)
k , et

l→k]) (FN to VN) (4.6)

m
(n)
k→l = ψF ([u(t,n)

k , f
(t,n−1)
l , et

k→l]) (VN to FN) (4.7)

FGNN requires approximately twice the GEPnet complexity due to dual node updates. We have ex-
plored different manner to modify FGNN to account for the available domain knowledge. In particular,
we have proposed 3 variants using different levels of CSI:

• FGNN: No CSI, only received signal

• FGNN-CSI: Incorporates HlHT
l and σ2

• FGNN-VEP: Adds VEP-computed means and variances

4.3.3 Performance comparison

The two approaches, GEPnet and FGNN, have been compared by simulation of an uplink MU-
MIMO scenario with 4 transmitting antennas and 4 antennas at the base station. The channel is
an ergodic Rayleigh MIMO channel with i.i.d coefficients. Simulations were done using Tensorflow.

Page 94 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

.

.

(a) GNN module Bipartite Graph

.

.

(b) FGNN module Factor Graph

Fig. 1: Detailed view of embeddings available on the graph

with FGNN, and in pink are the ones combined with GEPnet.
The curves in green are for the FGNN module and in red are
the FGNN-CSI.

Regarding complexity, in practice, we use the same di-
mension parameters for every ω, ωV , ωF and for ε, εV , εF .
Since FGNNs use two node updates, they are almost twice as
complex as GNN. For example, considering a fully connected
graph with K = L, FGNNs are twice as complex as GNNs.
But if K →= L then the number of multiplications slightly
changes between the variable node update and the factor node
update.

The training of the network uses the stochastic gradient
descent method in conjunction with the Adam optimizer. We
use the Binary Cross Entropy (BCE) loss between LLRs
obtained from the estimated symbol and the transmitted bits.
The network is trained during 500 epochs. In each epoch, we
iterate 100 times over 2 batches of 512 bits to simulate the
transmission. We observed that the use of small batches brings
better performance. A learning rate of 0.001 is applied. To test
the final Bit Error Rate (BER), the model with the best loss is
loaded. The MLPs ε have 3 layers, Nω1 = d, Nω2 = Nω1/2
and Nω3

= Nu with d = 64, Nu = 8 and ReLU activation
functions. dout also has size 64. The damping factor of each
auto-iteration is also learned.

The amount of iterations in VEP is T = 3. Without any
iterative detector the amount of iteration inside the GNN is
equal to N = 10, and with VEP it is set to N = 3 to have an
equivalent amount of iterations in total.

1) Uplink MU-MIMO: Figure 2 gives the BER of a MU-
MIMO communication with 4 transmitting antennas and 4 an-
tennas at the base station. The channel is an ergodic Rayleigh
MIMO channel with i.i.d coefficients hi,j ↑ CN (0, 1).

The FGNN without any CSI cannot detect the symbols. The
red curve shows that if we use CSI then the neural network
can detect symbols but hits a floor around an error rate of
0.5 ↓ 10→2. The joint use with a SISO detector breaks this

floor, but we see that the neural networks based on the factor
graph FGNN-MMSE and FGNN-VEP is unable to outperform
VEP. The GEPnet approach reaches better performance, but
its use with MMSE and VEP gives almost the same results.
This could be expected since we use QPSK on a 4↓4 system.
Simulations with a 16 ↓ 16 MIMO system with 16 ↔ QAM
modulation showed better results for GEPnet-VEP compared
to GEPnet-MMSE.

 �
 �� �
 ��
��������

��

�� 	

�� �

�� �

�� �

�

�

���

�
��������
����
��������
��������

������
�
�
��������

�
������
�

Fig. 2: BER comparison for 4↓ 4 MU-MIMO with Rayleigh
channel and perfect CSI with QPSK modulation

2) Channel with ISI: Figure 3 gives the BER of K = 64
symbols over the Proakis C channel with channel impulse
response [0.227, 0.460, 0.688, 0.460, 0.227]. Neural networks
combined with VEP did not bring any improvement compared
to their use with MMSE so we removed them on this figure for
visibility. The Maximum Likelihood (ML) bound in yellow is
also added to highlight the theoretical limitation. The purple
curve "GEPnet-CSI" correspond to the module in 2 without
any prior SISO detection and only the information from the

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on October 18,2025 at 09:05:13 UTC from IEEE Xplore. Restrictions apply.

Figure 4.5: BER comparison for 4 × 4 MU-MIMO with Rayleigh channel and perfect CSI with QPSK
modulation

The constellations are all gray-mapped QPSK. Every transmission is done with perfect CSI. We
compare non-learned Minimum Mean Square Error (MMSE) and VEP to the learned modules. The
results are shown in Fig. 4.5. We call "GEPnet-MMSE" the use of the GNN module with MMSE prior
detection. Full lines with star markers are for MMSE and its associated learned GNN, and dotted
lines with cross markers correspond to VEP. In blue are the non-learned algorithms, in brown are the
ones combined with FGNN, and in pink are the ones combined with GEPnet. The curves in green are
for the FGNN module and in red are the FGNN-CSI. We observe that the neural networks based on
the factor graph FGNN-MMSE and FGNN-VEP is unable to outperform standard VEP. The GEPnet
approach reaches better performance, especially when combined with VEP. Larger gains have been
observed for larger systems, e.g. 16 × 16 with 16-QAM.

One can see that the FGNN performs poorly on fully connected graphs (MU-MIMO) but other
simulations on ISI channels, not reported here, demonstrate that FGNN excels on sparse graphs.
GEPnet demonstrates better scalability to larger MIMO systems compared to FGNN. These results
highlight that the choice between factor graphs (with heterogeneous nodes) and transformed bipar-
tite graphs (e.g., based on HT H) fundamentally impacts detection performance with message-passing
GNNs. Therefore GNN architectures must be carefully matched to the underlying communication
scenario for best performance. The integration of domain knowledge through appropriate graph rep-
resentations and attribute engineering can prove crucial in that respect.

©AI4CODE, October 2025 Page 95 of (104)

D3.2: Improved Learning-Based Decoders (Final)

5 General Conclusion

This deliverable reports on the research work carried out within WP3. Following the design space
exploration performed in Deliverable D3.1, a number of possible technical contributions were identified
for the remaining of the project, falling within one of the following two categories [D3.1]:

• Developing enhanced ML-aided FEC decoders, or improving their robustness to channel uncer-
tainty or mismatch at runtime. The main focus here is on the error-correction performance,
while ensuring that complexity considerations are also properly taken into account.

• Developing reduced complexity decoders for non-binary codes. The main focus here is on reducing
the decoding complexity, while ensuring negligible or minimal degradation of the error-correction
performance.

Of these two items, only the first one, using learning to improve binary FEC decoding, was ultimately
explored, but thoroughly, and from various angles. As related to the second item, instead of developing
reduced-complexity decoders for non-binary channel codes, we chose to investigate a more general form
of non-binary decoding problem: using deep learning for low-complexity detection of linearly mixed
modulated symbols in multi-user MIMO communications, a task akin to Euclidean-space decoding.

The first three sections of the deliverable aimed at using learning to improve the decoding of short
binary codes. The very first section tackled the challenge of approaching the performance of optimal
soft-decision Maximum-Likelihood Decoding (MLD) for an arbitrary linear block code, using a model-
free approach for minimum inductive bias. Our investigation was guided by several key questions:
Are current neural architectures capable of achieving near-MLD performance for codes of practical
relevance? If so, how does the complexity of the model scale with parameters such as code length or
minimum distance? Additionally, how does the performance of these architectures evolve as a function
of the size of the training set? The focus was placed on syndrome-based neural decoding (SBND) which
was found to perform best among existing model-free decoders. A performance analysis of the SBND
decoder across various codes revealed two key findings: first, its frame error rate (FER) performance
remains significantly inferior to that of the MLD decoder; second, current training approaches do
not effectively align with the intended objective. We proposed several contributions to address these
issues. These contributions are summarized below, with the key lessons learned:

1. We demonstrated that insufficient attention has been given to training data quality, especially
when compared to the extensive efforts devoted to developing new model architectures. By
using carefully designed fixed training datasets, we showed that simple models—such as the
original GRU or the ECCT model— outperform, often by a substantial margin, the most recent
architectures while requiring far fewer data samples.

2. Optimizing SBND model training enabled us to push these models to their performance limits
across different codes. However, this process exposed a scalability issue: as code length increases
or code rate decreases, performance plateaus. Neither expanding the dataset size nor increasing
model parameters appears to bridge the gap to MLD performance.

3. Although our data-centric approach now allows us to closely approach MLD performance for
high-rate, moderate-length codes, the number of parameters required remains prohibitively high
as compared to traditional decoding algorithms such as Chase-2 decoding. Current SBND models
lack the necessary efficiency for practical deployment.

Now that SBND model training is better understood, a promising research direction would be to
identify the limitations of current architectures—with the goal of designing new, parameter-efficient
models that scale more effectively.

Page 96 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

The next two sections delved into the specific challenge of near-MLD soft-decision decoding of
short LDPC codes. A fundamental observation made in Section 2 is that short LDPC codes are not
inherently bad. Depending on the way they are constructed, their MLD performance can closely
approach the optimal coding bounds in the short-length regime. On the other hand, BP decoding is
largely suboptimal in this regime, proving unable to effectively exploit the full error correction capacity
of the code. Accordingly, our contributions focused on improving the BP decoding performance of
short LDPC codes, by following a model-based approach, and leveraging on and/or combining several
techniques, such as,

• learning a set of perturbations to be applied to the input of the BP decoder whenever it fails,
following a multiple-round BP (MRBP) strategy,

• exploiting a decoding diversity approach, implying several decoders working either in serial or
in parallel, where each decoder is trained to decode a specific class of errors,

• complementing neural-BP or conventional BP decoding with an ordered statistics decoding
(OSD) post-processing step.

Here is a summary of the main results and lessons drawn from this work:

1. Decoding approaches based solely on neural BP generally lead to an increase in the decoding
speed, rather than an intrinsic improvement of the error correction capability. Our neural
(BP-RNN based) decoding diversity approach is no exception to this rule. Given an worst-
case latency constraint (in the form of a maximum number of decoding iterations), the BP-RNN
diversity allows increasing the decoding performance, exploiting a parallel decoding architecture.
However, if the worst-case latency constraint is relaxed, the BP-RNN diversity performance can
be attained by the conventional BP decoder, at the cost of a larger number of decoding iterations.

2. To enhance the BP (or neural BP, e.g., BP-RNN) decoding performance, we considered the use
of a post-processing step, in the form of either MRBP or OSD. Although treated independently,
these two approaches share some similarities, as in both cases the post-processing step is supplied
with some reliability metric that needs to be learned. To some extent, one can think of the MRBB
approach as a low-complexity variant of OSD, where one reuses BP as system solver, after some
perturbation of its inputs. Recycling reliability metrics between MRBP or OSD approaches
might be subject to future work.

3. As regard to the learned MRBP approach, we have been able to design a model that is more
accurate at selecting the harmful bits to perturb than the best-known expert rules. Accordingly
we have been able to reduce the number of decoding rounds required by MRBP to approach MLD
performance. While this highly encouraging result demonstrates significant potential, it must be
tempered by the fact that the model used to predict which bits to flip remains disproportionately
complex compared to the baseline BP decoder it augments.

4. For OSD post-processing, we built upon two complementary approaches: (1) the use of decoding
diversity (in the form of either multiple BP-RNN decoders, each followed by one OSDs, or
multiple OSD after one single BP decoding), and (2) learning a reliability metric better suited
to OSD post-processing, notably through the use of the focal loss function (instead of the usual
binary cross-entropy loss function). We showed that the proposed approach, combining decoding
diversity and low-order OSD post-processing, provides an efficient way to bridge the gap to MLD
for short LDPC codes. While this result completely meets the expectations in terms of the error
correction performance, this is not the end of the story, as the error correction performance must
be balanced against the underlying decoding complexity.

The primary takeaway from these two contributions is clear: in both cases, integrating learning into the
algorithm significantly reduced the number of re-encoding or re-decoding attempts required to achieve
a target performance level. In both cases learning proved able to improve upon expert algorithms

©AI4CODE, October 2025 Page 97 of (104)

D3.2: Improved Learning-Based Decoders (Final)

or rules. This progress effectively narrows the gap between the BP decoder and the MLD decoder
in a cost-effective manner. Nevertheless, the complexity of both post-processing methods remains
prohibitively high compared to the inherent simplicity of the original BP decoder. As a result, the
challenge of achieving near-MLD performance for short LDPC codes remains largely unresolved.

The final part of this work, detailed in Section 4, investigated the application of deep learning
to multi-user detection in MIMO transmissions. Here also, the optimal detector is well known but
computationally infeasible for practical implementation, necessitating the use of simplified, suboptimal
approaches in radio receivers. We explored various ways to integrate learning into this context, ranging
from the simplest—learning the optimal weighting between a priori and a posteriori information in the
extrinsic information exchange of a turbo receiver—to more sophisticated methods, such as exchanging
information via learned functions in a graph neural network. The key takeaway from this work is that
deep learning can indeed help bridge the gap to optimal detector performance, but the architecture
must be carefully tailored to the problem to achieve a solution with acceptable complexity.

Page 98 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

Bibliography

[1] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep learning for decoding of linear codes - a
syndrome-based approach,” in IEEE Int. Symp. on Inform. Theory (ISIT), 2018, pp. 1595–1599.

[2] Y. Choukroun and L. Wolf, “Error correction code transformer,” arXiv preprint arXiv:2203.14966,
2022.

[3] J. Snyders and Y. Be’ery, “Maximum likelihood soft decoding of binary block codes and decoders
for the golay codes,” IEEE Transactions on Information Theory, vol. 35, no. 5, pp. 963–975, 1989.

[4] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered
statistics,” IEEE Transactions on Information Theory, vol. 41, no. 5, pp. 1379–1396, 1995.

[5] K. Cho, B. van Merrienboer, Çaglar Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder–decoder for statistical machine
translation,” in Conference on Empirical Methods in Natural Language Processing, 2014.

[6] D. Artemasov, K. Andreev, and A. Frolov, “On a unified deep neural network decoding architec-
ture,” in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), 2023, pp. 1–5.

[7] G. De Boni Rovella and M. Benammar, “Improved syndrome-based neural decoder for linear
block codes,” in GLOBECOM 2023 - 2023 IEEE Global Communications Conference. IEEE,
Dec. 2023.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” 2017. [Online]. Available: https:
//arxiv.org/pdf/1706.03762.pdf

[9] S.-J. Park, H.-Y. Kwak, S.-H. Kim, Y. Kim, and J.-S. No, “Crossmpt: Cross-attention message-
passing transformer for error correcting codes,” arXiv preprint arXiv:2405.01033, 2024.

[10] Y. Choukroun and L. Wolf, “A foundation model for error correction codes,” in The Twelfth
International Conference on Learning Representations (ICLR), 2024.

[11] Y. Choukroun, “Error correction code transformer (ecct) source code,” https://github.com/
yoniLc/ECCT, 2022.

[12] G. De Boni Rovella, “Solutions de décodage canal basées sur l’apprentissage automatique pour
les communications de type machine-à-machine,” Ph.D. dissertation, 2024, thèse de doctorat
dirigée par Lacan, Jérôme et Benammar, Meryem Informatique et Télécommunications Toulouse,
ISAE 2024. [Online]. Available: http://www.theses.fr/2024ESAE0065

[13] Y. Yuan, P. Scheepers, L. Tasiou, Y. C. Gültekin, F. Corradi, and A. Alvarado, “On the design
and performance of machine learning based error correcting decoders,” in 2025 14th International
ITG Conference on Systems, Communications and Coding (SCC), 2025, pp. 1–6.

[14] B. Mirzasoleiman and S. Joshi, “Foundations of data-efficient learning,” in Proceedings of the
Forty-first International Conference on Machine Learning (ICML), 2024.

[15] R. Gribonval, A. Chatalic, N. Keriven, V. Schellekens, L. Jacques, and P. Schniter, “Sketching
data sets for large-scale learning: Keeping only what you need,” IEEE Signal Processing Magazine,
vol. 38, no. 5, pp. 12–27, Sept. 2021.

[16] G. Kolossov, A. Montanari, and P. Tandon, “Towards a statistical theory of data selection under
weak supervision,” in Proceedings of the 12th International Conference on Learning Representa-
tions (ICLR), 2024.

©AI4CODE, October 2025 Page 99 of (104)

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://github.com/yoniLc/ECCT
https://github.com/yoniLc/ECCT
http://www.theses.fr/2024ESAE0065

D3.2: Improved Learning-Based Decoders (Final)

[17] D. Nguyen et al., “Make the most of your data: Changing the training data distribution to
improve in-distribution generalization performance,” arXiv preprint, 2024. [Online]. Available:
https://arxiv.org/abs/2404.17768

[18] I. Be’ery, N. Raviv, T. Raviv, and Y. Be’ery, “Active deep decoding of linear codes,” IEEE
Transactions on Communications, vol. 68, no. 2, pp. 628–640, Feb. 2020.

[19] J. Pan and W. H. Mow, “Radius domain-based importance sampling estimator for linear block
codes over the awgn channel,” in ICC 2022-IEEE International Conference on Communications.
IEEE, 2022, pp. 1343–1348.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[21] E. Kavvousanos and V. Paliouras, “An iterative approach to syndrome-based deep learning de-
coding,” in 2020 IEEE Globecom Workshops (GC Wkshps. IEEE, 2020, pp. 1–6.

[22] J. K. S. Kamassury and D. Silva, “Iterative error decimation for syndrome-based neural network
decoders,” arXiv preprint arXiv:2012.00089, 2020.

[23] M. Geiselhart, M. Ebada, A. Elkelesh, J. Clausius, and S. Ten Brink, “Automorphism ensemble
decoding of quasi-cyclic LDPC codes by breaking graph symmetries,” IEEE Communications
Letters, 2022.

[24] T. Park, S.-J. Park, H.-Y. Kwak, S.-H. Kim, and Y. Kim, “Lowering the error floor of error
correction code transformer,” arXiv preprint arXiv:2502.09065, 2025.

[25] M. Levy, Y. Choukroun, and L. Wolf, “Accelerating error correction code transformers,” arXiv
preprint arXiv:2410.05911, 2024.

[26] S.-e. Cohen, Y. Choukroun, and E. Nachmani, “Hybrid mamba-transformer decoder for error-
correcting codes,” arXiv preprint arXiv:2505.17834, 2025.

[27] M. Helmling et al., “Database of Channel Codes and ML Simulation Results,” http://www.rptu.
de/channel-codes, 2023.

[28] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,”
IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359, 2010.

[29] M. P. Fossorier, “Iterative reliability-based decoding of low-density parity check codes,” IEEE
Journal on selected Areas in Communications, vol. 19, no. 5, pp. 908–917, 2001.

[30] H. Lee, Y.-S. Kil, M. Jang, S.-H. Kim, O.-S. Park, and G. Park, “Multi-round belief propagation
decoding with impulsive perturbation for short ldpc codes,” IEEE Wireless Communications
Letters, vol. 9, no. 9, pp. 1491–1494, 2020.

[31] N. Varnica, M. P. C. Fossorier, and A. Kavcic, “Augmented belief propagation decoding of low-
density parity check codes,” IEEE Trans. on Communications, vol. 55, no. 7, pp. 1308–1317,
2007.

[32] S. Scholl, P. Schläfer, and N. Wehn, “Saturated min-sum decoding: An “afterburner” for ldpc de-
coder hardware,” in 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2016, pp. 1219–1224.

[33] B. Gadat and C. Poulliat, “Modified augmented belief propagation for general memoryless chan-
nels,” in 2016 9th International Symposium on Turbo Codes and Iterative Information Processing
(ISTC). IEEE, 2016, pp. 191–195.

Page 100 of (104) ©AI4CODE, October 2025

https://arxiv.org/abs/2404.17768
http://www.rptu.de/channel-codes
http://www.rptu.de/channel-codes

D3.2: Improved Learning-Based Decoders (Final)

[34] P. Kang, Y. Xie, L. Yang, C. Zheng, J. Yuan, and Y. Wei, “Enhanced quasi-maximum likelihood
decoding of short ldpc codes based on saturation,” in 2019 IEEE Information Theory Workshop
(ITW). IEEE, 2019, pp. 1–5.

[35] M. Zhou and X. Gao, “Improved augmented belief propagation decoding based on oscillation,”
in 2008 14th Asia-Pacific Conference on Communications. IEEE, 2008, pp. 1–4.

[36] F. Carpi, C. Häger, M. Martalò, R. Raheli, and H. D. Pfister, “Reinforcement learning for channel
coding: Learned bit-flipping decoding,” in 2019 57th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton). IEEE, 2019, pp. 922–929.

[37] H. Lee, Y.-S. Kil, M. Y. Chung, and S.-H. Kim, “Neural network aided impulsive perturbation
decoding for short raptor-like ldpc codes,” IEEE Wireless Communications Letters, vol. 11, no. 2,
pp. 268–272, 2021.

[38] S. Scholl, P. Schläfer, and N. Wehn, “Saturated min-sum decoding: An “afterburner” for ldpc de-
coder hardware,” in 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
2016, pp. 1219–1224.

[39] P. Kang, Y. Xie, L. Yang, C. Zheng, J. Yuan, and Y. Wei, “Enhanced quasi-maximum likelihood
decoding of short ldpc codes based on saturation,” in 2019 IEEE Information Theory Workshop
(ITW), 2019, pp. 1–5.

[40] A. Kothiyal, O. Y. Takeshita, W. Jin, and M. Fossorier, “Iterative reliability-based decoding
of linear block codes with adaptive belief propagation,” IEEE Communications Letters, vol. 9,
no. 12, pp. 1067–1069, 2005.

[41] T. R. Halford and K. M. Chugg, “Random redundant soft-in soft-out decoding of linear block
codes,” in IEEE International Symposium on Information Theory, 2006, pp. 2230–2234.

[42] I. Dimnik and Y. Be’ery, “Improved random redundant iterative hdpc decoding,” IEEE Trans-
actions on Communications, vol. 57, no. 7, pp. 1982–1985, 2009.

[43] T. Hehn, J. B. Huber, O. Milenkovic, and S. Laendner, “Multiple-bases belief-propagation de-
coding of high-density cyclic codes,” IEEE Transactions on Communications, vol. 58, no. 1, pp.
1–8, 2010.

[44] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,”
IEEE Transactions on Information Theory, vol. 41, no. 5, pp. 1379–1396, 1995.

[45] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear codes using deep learning,”
in IEEE Annual Allerton Conference on Communication, Control, and Computing (Allerton),
2016, pp. 341–346.

[46] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be?ery, “Deep learn-
ing methods for improved decoding of linear codes,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 119–131, 2018.

[47] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet iterative decoders of LDPC
codes via recurrent quantized neural networks,” IEEE Transactions on Communications, vol. 68,
no. 7, pp. 3963–3974, 2020.

[48] X. Xiao, N. Raveendran, B. Vasić, S. Lin, and R. Tandon, “Faid diversity via neural networks,”
in 2021 11th International Symposium on Topics in Coding (ISTC). IEEE, 2021, pp. 1–5.

[49] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat, “Pruning and quantizing
neural belief propagation decoders,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 7, pp. 1957–1966, 2020.

©AI4CODE, October 2025 Page 101 of (104)

D3.2: Improved Learning-Based Decoders (Final)

[50] N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J. Gross, “Neural belief propa-
gation decoding of CRC-polar concatenated codes,” in IEEE International Conference on Com-
munications (ICC), 2019, pp. 1–6.

[51] S. Han, J. Oh, K. Oh, and J. Ha, “Deep-learning for breaking the trapping sets in low-density
parity-check codes,” IEEE Transactions on Communications, vol. 70, no. 5, pp. 2909–2923, 2022.

[52] T. Richardson, “Error floors of LDPC codes,” in Proceedings of the Annual Allerton Conference
on Communication Control and Computing, vol. 41, no. 3, 2003, pp. 1426–1435.

[53] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, and M. Wainwright, “Predicting error
floors of structured LDPC codes: Deterministic bounds and estimates,” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 6, pp. 908–917, 2009.

[54] B. J. Frey, R. Kotter, and A. Vardy, “Skewness and pseudocodewords in iterative decoding,” in
IEEE International Symposium on Information Theory, 1998, p. 148.

[55] D. J. MacKay and M. S. Postol, “Weaknesses of Margulis and Ramanujan-Margulis low-density
parity-check codes,” Electronic Notes in Theoretical Computer Science, vol. 74, pp. 97–104, 2003.

[56] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in
Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.

[57] M. Karimi and A. H. Banihashemi, “On characterization of elementary trapping sets of variable-
regular LDPC codes,” IEEE Transactions on Information Theory, vol. 60, no. 9, pp. 5188–5203,
2014.

[58] Y. Hashemi and A. H. Banihashemi, “On characterization and efficient exhaustive search of
elementary trapping sets of variable-regular LDPC codes,” IEEE Communications Letters, vol. 19,
no. 3, pp. 323–326, 2015.

[59] H. Falsafain and S. R. Mousavi, “Exhaustive enumeration of elementary trapping sets of an
arbitrary Tanner graph,” IEEE Communications Letters, vol. 20, no. 9, pp. 1713–1716, 2016.

[60] S. Abu-Surra, D. DeClercq, D. Divsalar, and W. E. Ryan, “Trapping set enumerators for specific
LDPC codes,” in IEEE Information Theory and Applications Workshop (ITA). IEEE, 2010, pp.
1–5.

[61] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “Analysis of absorbing
sets and fully absorbing sets of array-based LDPC codes,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 181–201, 2010.

[62] S.-C. Wang, “Artificial neural network,” in Interdisciplinary computing in Java programming.
Springer, 2003, pp. 81–100.

[63] M. Karimi and A. H. Banihashemi, “Efficient algorithm for finding dominant trapping sets of
LDPC codes,” IEEE Transactions on Information Theory, vol. 58, no. 11, pp. 6942–6958, 2012.

[64] G. B. Kyung and C.-C. Wang, “Exhaustive search for small fully absorbing sets and the cor-
responding low error-floor decoder,” in IEEE International Symposium on Information Theory
(ISIT). IEEE, 2010, pp. 739–743.

[65] X. Zhang and F. Cai, “Efficient partial-parallel decoder architecture for quasi-cyclic nonbinary
LDPC codes,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 2, pp.
402–414, 2011.

[66] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular progressive edge-growth
Tanner graphs,” IEEE Transactions on Information Theory, vol. 52, no. 51, pp. 386–398, 2005.

Page 102 of (104) ©AI4CODE, October 2025

D3.2: Improved Learning-Based Decoders (Final)

[67] “Short block length LDPC codes for TC synchronization and channel codding (CCSDS 231.1-O-
1),” Consultative Committee for Space Data Systems (CCSDS), Techical Report, April 2015.

[68] D. Declercq, B. Vasic, S. K. Planjery, and E. Li, “Finite alphabet iterative decoders – part
II: Towards guaranteed error correction of LDPC codes via iterative decoder diversity,” IEEE
Transactions on Communications, vol. 61, no. 10, pp. 4046–4057, 2013.

[69] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude,” COURSERA: Neural networks for machine learning, vol. 4, no. 2, pp.
26–31, 2012.

[70] B. A. LaMacchia and A. M. Odlyzko, “Solving large sparse linear systems over finite fields,”
in Proc. of Annual Int. Cryptology Conf. on Advances in Cryptology (CRYPT0’90), 1990, pp.
109–133.

[71] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE
Trans. on Information Theory, vol. 47, no. 2, pp. 638–656, 2001.

[72] D. Burshtein and G. Miller, “Efficient maximum-likelihood decoding of LDPC codes over the
binary erasure channel,” IEEE Trans. on Information Theory, vol. 50, no. 11, pp. 2837–2844,
2004.

[73] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika, and N. Wehn, “Database
of channel codes and ML simulation results,” www.uni-kl.de/channel-codes, 2019.

[74] M. P. C. Fossorier and S. Lin, “Computationally efficient soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Trans. on Inf. Theory, vol. 42, no. 3, pp. 738–750, 1996.

[75] C. Yue, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “Segmentation-discarding ordered-
statistic decoding for linear block codes,” in 2019 IEEE GLOBECOM. IEEE, 2019, pp. 1–6.

[76] D. Wu, Y. Li, X. Guo, and Y. Sun, “Ordered statistic decoding for short polar codes,” IEEE
Communications Letters, vol. 20, no. 6, pp. 1064–1067, 2016.

[77] R. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes,” in Proc. ISTA.
Citeseer, 2001, pp. 365–370.

[78] D. J. C. MacKay, “Encyclopedia of sparse graph codes,” http://www.inference.org.uk/mackay/
codes/data.html, 2008.

[79] J. Rosseel, V. Mannoni, I. Fijalkow, and V. Savin, “Decoding short LDPC codes via BP-RNN
diversity and reliability-based post-processing,” IEEE Trans. on Com., vol. 70, no. 12, pp. 7830–
7842, 2022.

[80] T. Minka, “Divergence measures and message passing. microsoft research, cambridge,” UK, Tech.
Rep. MSRTR-2005-173, Tech. Rep., 2005.

[81] M. Senst and G. Ascheid, “How the framework of expectation propagation yields an iterative ic-
lmmse mimo receiver,” in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011.
IEEE, 2011, pp. 1–6.

[82] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE Trans-
actions on Information Theory, vol. 65, no. 10, pp. 6664–6684, 2019.

[83] A. Scotti, N. N. Moghadam, D. Liu, K. Gafvert, and J. Huang, “Graph neural networks for
massive mimo detection,” arXiv preprint arXiv:2007.05703, 2020.

©AI4CODE, October 2025 Page 103 of (104)

www.uni-kl.de/channel-codes
http://www.inference.org.uk/mackay/codes/data.html
http://www.inference.org.uk/mackay/codes/data.html

D3.2: Improved Learning-Based Decoders (Final)

[84] H. He, X. Yu, J. Zhang, S. Song, and K. B. Letaief, “Message passing meets graph neural networks:
A new paradigm for massive mimo systems,” IEEE Transactions on Wireless Communications,
vol. 23, no. 5, pp. 4709–4723, 2023.

[85] A. Kosasih, V. Onasis, V. Miloslavskaya, W. Hardjawana, V. Andrean, and B. Vucetic, “Graph
neural network aided mu-mimo detectors,” IEEE Journal on Selected Areas in Communications,
vol. 40, no. 9, pp. 2540–2555, 2022.

[86] Z. Zhang, M. H. Dupty, F. Wu, J. Q. Shi, and W. S. Lee, “Factor graph neural networks,” Journal
of Machine Learning Research, vol. 24, no. 181, pp. 1–54, 2023.

Page 104 of (104) ©AI4CODE, October 2025

	Introduction
	Syndrome-Based Neural Decoding of Linear Codes
	Motivation
	Soft-decision decoding of linear block codes
	Transmission System Model
	The Optimal Decoder
	Complexity of MLD

	Principle of syndrome-based neural decoding
	Principle
	Training Method

	DNN architectures for SBND
	Multi-layer Perceptron (MLP)
	Recurrent Neural Network (RNN)
	Transformer

	Performance analysis of syndrome-based neural decoders
	Implementation Setup
	Performance Results
	SBND limitations
	Summary

	Improving training of SBND Models
	Training for MLD
	Training with fixed datasets
	Optimizing the training distribution
	Taking advantage of data augmentation
	Reflection on the proposed heuristics to improve the training of SBND

	Improving SBND performance at inference time
	Iterative Correction
	Test-time Augmentation (TTA)
	Reflection on the inference time SBND enhancement techniques

	Conclusion

	Learning to Improve BP Decoding of Short LDPC Codes
	Motivation
	Multi-Round Belief Propagation decoding
	General framework
	How to select the bits to perturb
	How to perturb the input
	Performance vs complexity

	Beyond MRBP: Learned MRBP
	Learning a better VN selection rule by combining metrics
	Learning the perturbation patterns with an MLP

	Deep learned MRBP
	Leveraging SBND to improve MRBP
	Performance of the proposed deep learned MRBP decoder

	Conclusion

	Improving Neural BP Decoders via Diversity and Post-Processing
	Motivation
	BP-RNN Diversity from Absorbing Sets Classification: Training, Selection, and Decoding Architectures
	Absorbing sets: search algorithm and classification
	Specialization of BP-RNN decoding
	BP-RNN diversity selection
	BP-RNN diversity decoding architectures
	Numerical results
	Discussion

	BP-RNN Diversity with OSD Post-Processing
	OSD decoding
	OSD as a post-porcessing step
	Numerical results
	Discussion

	Improving OSD Post-Processing for BP Decoding
	Accumulated and optimized LLR for OSD post-processing
	Selecting sets of LLRs
	Complexity reduction
	Numerical results
	Discussion

	Learned message passing receivers for multi-user MIMO communications
	Motivation
	Leveraging learning to balance extrinsic vs APP information feedback in Turbo VEP MU-MIMO receivers
	Deep Unfolding with Learnable Scaling Factors
	Modified Gated Recurrent Unit Architecture
	Performance comparison

	Message-passing Graph Neural Networks for graph-based wireless communications
	GEPnet: Bipartite Graph Approach
	FGNN: Factor Graph Neural Network
	Performance comparison

	General Conclusion
	Bibliography

